- 不等式的应用
- 共30题
对于函数





已知函数
18.

若区间

正确答案
解析
解:(Ⅱ)
因为区间

考查方向
考察函数的新信息题,具体涉及到函数的定义域,值域,图像等性质
解题思路
先确定函数的值域,利用“可等域函数”, 结合函数的图象,可得函数 
易错点
对新信息理解到位易出错,对函数的综合性质应用不熟练易出现,分类与解题逻辑上的错误,数形结合应用易出错
正确答案
解析
考查方向
考察函数的新信息题,具体涉及到函数的定义域,值域,图像等性质
解题思路
利用“可等域区间”的定义,得出a>0,结合图象,利用区间与对称轴的关系及函数的单调性求出a,b
易错点
对新信息理解到位易出错,对函数的综合性质应用不熟练易出现,分类与解题逻辑上的错误,数形结合应用易出错
函数





25.若



26.求证:当

正确答案

解析
因为
















即


考查方向
解题思路
第一问由切线与直线



正确答案
略;
解析


令

再令

因为



所以



所以


令


因为




所以

所以

考查方向
解题思路
第二问现将不等式等级变形,构造新函数,对新函数用导函数求最值
13.在直角坐标系中,已知点







正确答案
4
解析
令a=0,则by



考查方向
解题思路
可令a=0 by



易错点
由可行域向不等式恒成立转化
知识点
已知函数




25.若函数

26.当(Ⅰ)中的

正确答案
解析
(1)解:
①



而

故

②





令



若

若


又
令

令



令



故


则
故


综上,

考查方向
解题思路
利用导数讨论函数的单调性与极值,并与图像结合。
利用第一问的结论化简左边的函数式,然后讨论函数的单调性和极值,即可得到结果。
易错点
忽视了函数的定义域
第一问中没有对k进行分类讨论
第二问的证明过程中不能正确利用第一问的结论化简函数。
正确答案
证明略
解析
由(1)知,


而

则

记

令



而



即
则





则


故

故
考查方向
解题思路
利用导数讨论函数的单调性与极值,并与图像结合。
利用第一问的结论化简左边的函数式,然后讨论函数的单调性和极值,即可得到结果。
易错点
忽视了函数的定义域
第一问中没有对k进行分类讨论
第二问的证明过程中不能正确利用第一问的结论化简函数。
心绞痛发作时,首选的速效药物是
A.普萘洛尔(心得安)
B.硝苯地平(心痛定)
C.硝酸异山梨醇酯(消心痛)
D.硝酸甘油
E.阿司匹林
正确答案
D
解析
暂无解析
已知函数
26.若函数

27.若函数

28.若



注:题目中e=2.71828…是自然对数的底数.
正确答案
(Ⅰ)
解析
试题分析:本题属于函数与导数的基本问题,题目的难度是逐渐由易到难,(1)按照解题步骤求解,(2)要注意转化思想的应用;
(Ⅰ)



又



则切线l的方程又可表示为
由

考查方向
解题思路
本题考查导数的几何意义和导数的应用,解题步骤如下:
1)求导,利用导数的几何意义求出两曲线的切线方程,利用切线相同进行求解;
2)作差,将问题转化为不等式恒成立问题;
3)构造函数,利用导数研究函数的单调性和最值;
4)利用前一步的结论合理赋值进行求解。
易错点
1)不能正确求导;
2)不能合理转化或赋值.
正确答案
(Ⅱ)
解析
试题分析:本题属于函数与导数的基本问题,题目的难度是逐渐由易到难,(1)按照解题步骤求解,(2)要注意转化思想的应用;
a=
(Ⅱ)由题

令



则当x>0时,
由


考查方向
解题思路
本题考查导数的几何意义和导数的应用,解题步骤如下:
1)求导,利用导数的几何意义求出两曲线的切线方程,利用切线相同进行求解;
2)作差,将问题转化为不等式恒成立问题;
3)构造函数,利用导数研究函数的单调性和最值;
4)利用前一步的结论合理赋值进行求解。
易错点
1)不能正确求导;
2)不能合理转化或赋值.
正确答案
(Ⅲ)

解析
试题分析:本题属于函数与导数的基本问题,题目的难度是逐渐由易到难,(1)按照解题步骤求解,(2)要注意转化思想的应用;
(Ⅲ)

由题


当


因为


所以
同理
①+②得
因为
由


所以

所以

考查方向
解题思路
本题考查导数的几何意义和导数的应用,解题步骤如下:
1)求导,利用导数的几何意义求出两曲线的切线方程,利用切线相同进行求解;
2)作差,将问题转化为不等式恒成立问题;
3)构造函数,利用导数研究函数的单调性和最值;
4)利用前一步的结论合理赋值进行求解。
易错点
1)不能正确求导;
2)不能合理转化或赋值.
设函数



25.求
26.证明:
正确答案
(1)

解析
试题分析: 本题属于导数的综合应用,考查考生转化与化归数学思想与方法。
(Ⅰ)因为


又点


所以

考查方向
解题思路
(1)利用导数解决曲线的切线问题,从而解出a,b的值
(2)通过构造新函数的方法找到证明不等式的突破口。
易错点
不等式证明如何构造新函数
正确答案
(2)对任意

解析
试题分析: 本题属于导数的综合应用,考查考生转化与化归数学思想与方法。
(Ⅱ)令
因为

所以




我们如果能够证明

下面证明:对任意

由(1)知
则


又



当



当



所以


所以
令
所以

所以
综上,对任意

考查方向
解题思路
(1)利用导数解决曲线的切线问题,从而解出a,b的值
(2)通过构造新函数的方法找到证明不等式的突破口。
易错点
不等式证明如何构造新函数
7.不等式2
正确答案
(﹣1,2)
解析
;∵2
解得:﹣1<x<2,故答案为:(﹣1,2)
考查方向
解题思路
利用指数函数的单调性转化为x2﹣x<2,求解即可。
易错点
本题考查了指数函数的性质,二次不等式的求解,在用函数单调性解不等式时易错.
知识点
(本小题满分14分)
设函数f(x)=ax2-a-lnx,其中a
(I)讨论f(x)的单调性;
(II)确定a的所有可能取值,使得f(x) >
正确答案
知识点
已知函数

25.当

26.若


27.若


正确答案
当



由



由



∴综上,

解析
当



由



由



∴综上,

考查方向
本题主要考查了导数的应用——利用导数求函数的单调区间问题,属于常规性问题。
解题思路
首先将


易错点
本题容易因含有对数的超越不等式不会解而导致结果算不出来。
教师点评
本题属于常规性问题,在每一年的高考中都会考到,需要考生加强这一类问题的训练。
正确答案
已知


从而


令



∴


当





而

解析
已知


从而


令



∴


当





而

考查方向
本题主要考查了导数的应用,通过求最值来解决不等式恒成立的问题。
解题思路
首先将问题转化为求函数的最值的问题,然后在利用导数予以解决。
易错点
本题在对恒成立问题的分析中容易产生错误的理解而导致出错。
正确答案
由(1)知,当


∵

即


又因为




∴


解析
由(1)知,当


∵

即


又因为




∴


考查方向
本题考查了导数的应用以及不等式的证明。
解题思路
首先根据函数的单调性予以放缩,再利用放缩法予以证明。
易错点
本题容易因为放缩法掌握不清楚而导致出现错误。
教师点评
本题属于不等式的证明问题,难度较大,考生需要有足够的知识储备和应变能力。
扫码查看完整答案与解析

























