- 不等式的应用
- 共30题
已知函数




25.若函数

26.当(Ⅰ)中的

正确答案
解析
(1)解:
①



而

故

②





令



若

若


又
令

令



令



故


则
故


综上,

考查方向
解题思路
利用导数讨论函数的单调性与极值,并与图像结合。
利用第一问的结论化简左边的函数式,然后讨论函数的单调性和极值,即可得到结果。
易错点
忽视了函数的定义域
第一问中没有对k进行分类讨论
第二问的证明过程中不能正确利用第一问的结论化简函数。
正确答案
证明略
解析
由(1)知,


而

则

记

令



而



即
则





则


故

故
考查方向
解题思路
利用导数讨论函数的单调性与极值,并与图像结合。
利用第一问的结论化简左边的函数式,然后讨论函数的单调性和极值,即可得到结果。
易错点
忽视了函数的定义域
第一问中没有对k进行分类讨论
第二问的证明过程中不能正确利用第一问的结论化简函数。
心绞痛发作时,首选的速效药物是
A.普萘洛尔(心得安)
B.硝苯地平(心痛定)
C.硝酸异山梨醇酯(消心痛)
D.硝酸甘油
E.阿司匹林
正确答案
D
解析
暂无解析
7.不等式2
正确答案
(﹣1,2)
解析
;∵2
解得:﹣1<x<2,故答案为:(﹣1,2)
考查方向
解题思路
利用指数函数的单调性转化为x2﹣x<2,求解即可。
易错点
本题考查了指数函数的性质,二次不等式的求解,在用函数单调性解不等式时易错.
知识点
(本小题满分14分)
设函数f(x)=ax2-a-lnx,其中a
(I)讨论f(x)的单调性;
(II)确定a的所有可能取值,使得f(x) >
正确答案
知识点
已知函数

25.当

26.若


27.若


正确答案
当



由



由



∴综上,

解析
当



由



由



∴综上,

考查方向
本题主要考查了导数的应用——利用导数求函数的单调区间问题,属于常规性问题。
解题思路
首先将


易错点
本题容易因含有对数的超越不等式不会解而导致结果算不出来。
教师点评
本题属于常规性问题,在每一年的高考中都会考到,需要考生加强这一类问题的训练。
正确答案
已知


从而


令



∴


当





而

解析
已知


从而


令



∴


当





而

考查方向
本题主要考查了导数的应用,通过求最值来解决不等式恒成立的问题。
解题思路
首先将问题转化为求函数的最值的问题,然后在利用导数予以解决。
易错点
本题在对恒成立问题的分析中容易产生错误的理解而导致出错。
正确答案
由(1)知,当


∵

即


又因为




∴


解析
由(1)知,当


∵

即


又因为




∴


考查方向
本题考查了导数的应用以及不等式的证明。
解题思路
首先根据函数的单调性予以放缩,再利用放缩法予以证明。
易错点
本题容易因为放缩法掌握不清楚而导致出现错误。
教师点评
本题属于不等式的证明问题,难度较大,考生需要有足够的知识储备和应变能力。
扫码查看完整答案与解析








