- 圆锥曲线的综合问题
- 共211题
已知椭圆的离心率为
,直线
与以原点为圆心,
椭圆的短半轴为半径的圆相切。
(1)求椭圆的方程;
(2)设椭圆与曲线
的交点为
、
,求
面积的最大值。
正确答案
见解析
解析
知识点
在平面直角坐标系中,已知动点,点
点
与点
关于直线
对称,且
.直线
是过点
的任意一条直线。
(1)求动点所在曲线
的轨迹方程;
(2)设直线与曲线
交于
两点,且
,求直线
的方程;
(3)设直线与曲线
交于
两点,求以
的长为直径且经过坐标原点
的圆的方程。
正确答案
(1)(2)
(3)
解析
(1)依据题意,可得点.
,
又,
.
所求动点
的轨迹方程为
.
(2) 若直线轴,则可求得
,这与已知矛盾,因此满足题意的直线
不平行于
轴。
设直线的斜率为
,则
。
由 得
。
设点,有
且
恒成立(因点
在椭圆内部)。
又,
于是,,即
,
解得。
所以,所求直线
(3) 当直线
轴时,
,点
到圆心的距离为1.即点
在圆外,不满足题意.
满足题意的直线
的斜率存在,设为
,则
.
设点,由(2)知,
进一步可求得
依据题意,有,
,
即,解得
.
所求圆的半径
,
圆心为.
所求圆的方程为:
知识点
已知双曲线的离心率为2,一个焦点与抛物线
的焦点相同,则双曲
线的渐近线方程为
正确答案
解析
略
知识点
已知椭圆(
)的焦点坐标为
,离心率为
,直线
交椭圆于
,
两点。
(1)求椭圆的方程;
(2)是否存在实数,使得以
为直径的圆过点
?若存在,求出
的值;若不存在,请说明理由。
正确答案
(1)
(2)
解析
(1)由,
,
得
,
,
所以椭圆方程是: ……………………4分
(2)设,
则
,
将代入
,整理得
(*)
则 ………………………7分
以PQ为直径的圆过,则
,即
, ………………………………12分
解得,此时(*)方程
,
所以 存在,使得以
为直径的圆过点
, ……14分
知识点
如图,已知椭圆:
的离心率为
,以椭圆
的左顶点
为圆心作圆
:
,设圆
与椭圆
交于点
与点
。
(1)求椭圆的方程;
(2)求的最小值,并求此时圆
的方程;
(3)设点是椭圆
上异于
,
的任意一点,且直线
分别与
轴交于点
,
为坐标原点,求证:
为定值,
正确答案
见解析。
解析
(1)
故椭圆的方程为
,
(2)点与点
关于
轴对称
,设
,
, 不妨设
。
由于点在椭圆
上,所以
, (*)
由已知,则
,
,
。
由于,故当
时,
取得最小值为
。
由(*)式,,
故
,又点
在圆
上,代入圆的方程得到
,
故圆的方程为:
,
(3)
知识点
以抛物y2=4x的焦点为圆心且与双曲线的渐近线相切的圆的方程
是____
正确答案
解析
略
知识点
已知抛物线的焦点为椭圆
的右焦点,且椭圆的长轴长为4,M、N是椭圆上的的动点。
(1)求椭圆标准方程;
(2)设动点满足:
,直线
与
的斜率之积为
,证明:存在定点
,使得
为定值,并求出
的坐标;
(3)若在第一象限,且点
关于原点对称,
垂直于
轴于点
,连接
并延长交椭圆于点
,记直线
的斜率分别为
,证明:
。
正确答案
见解析。
解析
(1)由题设可知:因为抛物线的焦点为
,
所以椭圆中的又由椭圆的长轴为4得
故
故椭圆的标准方程为:
(2)设,
由可得:
由直线OM与ON的斜率之积为可得:
,即
由①②可得:
M、N是椭圆上的点,故
故,即
由椭圆定义可知存在两个定点,
使得动点P到两定点距离和为定值;
(3)设,由题设可知
,
由题设可知斜率存在且满足
.③
将③代入④可得:
⑤
点在椭圆
,
故
知识点
已知抛物线和双曲线都经过点,它们在x轴上有共同焦点,对称轴是坐标轴,抛物线的定点为坐标原点。.
(1)求抛物线和双曲线标准方程;
(2)已知动直线m过点P(3,0),交抛物线于A,B两点,记以线段AP为直径的圆为圆C,
求证:存在垂直于x轴的直线l被圆C截得的弦长为定值,并求出直线l的方程。
正确答案
见解析。
解析
知识点
已知焦点在轴的椭圆方程为
,过椭圆长轴的两顶点做圆
的切线,若切线围成的四边形的面积为
,则椭圆的离心率为
正确答案
解析
略
知识点
已知椭圆C:的离心率
,一条准线方程为
。
(1)求椭圆C的方程;
(2)设G,H为椭圆上的两个动点,O为坐标原点,且OG⊥OH。
①当直线OG的倾斜角为60°时,求△GOH的面积;
②是否存在以原点O为圆心的定圆,使得该定圆始终与直线GH相切?若存在,请求出该定圆方程;若不存在,请说明理由。
正确答案
见解析。
解析
(1)因为椭圆的离心率,一条准线方程为
。
所以,
,a2=b2+c2,
解得,
所以椭圆方程为,
(2)①由,解得
,
由得
,
所以,所以
,
②假设存在满足条件的定圆,设圆的半径为R,则OG•OH=R•GH
因为OG2+OH2=GH2,故,
当OG与OH的斜率均存在时,不妨设直线OG方程为:y=kx,与椭圆方程联立,可得,
∴
同理可得
∴,∴R=
当OG与OH的斜率有一个不存在时,可得
故满足条件的定圆方程为x2+y2=。
知识点
扫码查看完整答案与解析