- 双曲线的性质(顶点、范围、对称性、离心率)
- 共2157题
设F1,F2分别为双曲线-
=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得(|PF1|-|PF2|)2=b2-3ab,则该双曲线的离心率为( )
正确答案
解析
解:∵(|PF1|-|PF2|)2=b2-3ab,
∴由双曲线的定义可得(2a)2=b2-3ab,
∴4a2+3ab-b2=0,
∴a=,
∴c==
b,
∴e==
.
故选:D.
双曲线-x2=1的两个焦点的坐标分别是______.
正确答案
(0,),(0,-
)
解析
解:双曲线-x2=1可知焦点在y轴上,a=
,b=1,∴c=
,
双曲线的焦点坐标(0,),(0,-
).
故答案为:(0,),(0,-
).
过点M(-2,0)作直线l与双曲线x2-y2=1交于A,B两点,以OA,OB为邻边作平行四边形OAPB,求点P的轨迹方程.
正确答案
解:设直线l的方程为y=k(x+2),代入双曲线x2-y2=1,可得(1-k2)x2-4k2x-4k2-1=0,
设A(x1,y1),B(x2,y2),则x1+x2=,y1+y2=
∴AB的中点为(,
),
设P(x,y),则x=,y=
∴x2+4x-y2=0;
当过M(-2,0)的直线l的斜率不存在时,直线l的方程为x=-2,把x=-2代入双曲线x2-y2=1得,A(-2,),B(-2,-
),P(-4,0)同样满足.
解析
解:设直线l的方程为y=k(x+2),代入双曲线x2-y2=1,可得(1-k2)x2-4k2x-4k2-1=0,
设A(x1,y1),B(x2,y2),则x1+x2=,y1+y2=
∴AB的中点为(,
),
设P(x,y),则x=,y=
∴x2+4x-y2=0;
当过M(-2,0)的直线l的斜率不存在时,直线l的方程为x=-2,把x=-2代入双曲线x2-y2=1得,A(-2,),B(-2,-
),P(-4,0)同样满足.
设F1、F2是双曲线C:=1(a>0,b>0)的两个焦点,P为曲线右支上的一点,则△F1PF2内切圆与x轴的切点坐标为______.
正确答案
(a,0)
解析
解:如图设切点分别为M,N,Q,则△PF1F2的内切圆的圆心的横坐标与Q横坐标相同.
由双曲线的定义,PF1-PF2=2a=4.
由圆的切线性质PF1-PF2=FIM-F2N=F1Q-F2Q=2a,
∵F1Q+F2Q=F1F2=2c,
∴F1Q=a+c,F2Q=c-a,
∴OQ=F1F2-QF2=c-(c-a)=a.
故答案为:(a,0).
已知双曲线的右焦点F(2,0),设A,B为双曲线上关于原点对称的两点,以AB为直径的圆过点F,直线AB的斜率为,则双曲线的离心率为( )
正确答案
解析
解:根据题意,设A(x1,y1),则B(-x1,-y1),
∵焦点F(2,0)在以线段AB为直径的圆上,
∴∠BFA=90°,可得•
=(x1-2)(-x1-2)-y12=0,
即为x12+y12=4,…①
又∵点A在双曲线上,且直线AB的斜率为,∴
,…②.
由①②联解消去x1、y1,得-
=
,…③
又∵F(2,0)是双曲线的右焦点,可得b2=c2-a2=4-a2,
∴代入③,化简整理得a4-8a2+7=0,解之得a2=1或7,
由于a2<c2=4,所以a2=7不合题意,舍去.
故a2=1,得a=1,离心率e==2.
故选D.
扫码查看完整答案与解析