- 直线、平面平行的判定与性质
- 共531题
20.在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1
(1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一事实;
(2)求多面体ABCDE的体积;
(3)求直线EC与平面ABED所成角的正弦值。
正确答案
(1)
如图,由已知AB⊥平面ACD,DE⊥平面ACD,
∴AB//ED,
设F为线段CE的中点,H是线段CD的中点,
连接FH,则,∴
,
∴四边形ABFH是平行四边形,
∴,
由平面ACD内,
平面ACD,
平面ACD
(2)取AD中点G,连接CG.
AB平面ACD,
∴CGAB
又CGAD
∴CG平面ABED, 即CG为四棱锥的高, CG=
∴=
2
=
.
(3)连接EG,由(2)有CG平面ABED,
∴即为直线CE与平面ABED所成的角,
设为,则在
中,
有.
解析
解析已在路上飞奔,马上就到!
知识点
19.几何体是四棱锥,△
为正三角形,
.
(1)求证:;
(2)若∠,M为线段AE的中点,求证:
∥平面
.
正确答案
(1)设中点为O,连接OC,OE,则由
知 ,
,
又已知,所以
平面OCE.
所以,即OE是BD的垂直平分线,
所以.
(2)取AB中点N,连接,
∵M是AE的中点,∴∥
,
∵△是等边三角形,∴
.
由∠BCD=120°知,∠CBD=30°,所以∠ABC=60°+30°=90°,即,
所以ND∥BC,
所以平面MND∥平面BEC,故DM∥平面BEC.
解析
解析已在路上飞奔,马上就到!
知识点
20.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,BC=CC1=AC=
(1)求证:BC1⊥平面AB1C
(2)求二面角B-AB1-C的大小
(3)求三棱锥A1-AB1C的体积
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
19.如图,四棱锥P﹣ABCD,PA⊥底面ABCD,AB∥CD,AB⊥AD,AB=AD=CD=2,PA=2,E,F分别是PC,PD的中点.
(Ⅰ) 证明:EF∥平面PAB;
(Ⅱ) 求直线AC与平面ABEF所成角的正弦值.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
17.一个四棱锥的三视图如图所示:
(1)根据图中标出的尺寸画出直观图(不要求写画法步骤);
(2)求三棱锥A-PDC的体积;
(3)试在PB上求点M,使得CM∥平面PDA并加以证明。
正确答案
(1)
(2)由三视图可知:底面
,底面ABCD为直角梯形,PB=BC=CD=1,AB=2,
∴ .
(3)当M为PB的中点时,CM∥平面PDA.
取PA中点N,连结MN,DN,可证MN∥CD,且MN=CD,
∴CM∥DN,又。
故CM∥平面PDA.
解析
解析已在路上飞奔,马上就到!
知识点
19.如图,四棱锥的底面是边长为8的正方形,四条侧棱长均为
交于O点,点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面
平面
平面GEFH.
(I)证明:平面ABCD;
(II)GH//EF;
(III)若,求四边形GEFH的面积.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
17.如图,在四棱柱ABCD﹣A1B1C1D1中,AB=BC=CA=,AD=CD=AA1=1,平面AA1C1C⊥平面ABCD,E为线段BC的中点,
(Ⅰ)求证:BD⊥AA1;
(Ⅱ)求证:A1E∥平面DCC1D1
(Ⅲ) 若AA1⊥AC,求A1E与面ACC1A1所成角大小.
正确答案
(Ⅰ)证明:在四棱锥ABCD﹣A1B1C1D1中,
∵AB=BC=CA,且AD=DC,
取AC中点O,则BO⊥AC,DO⊥AC,∴B,O,D三点在一条直线上.
又∵面AA1C1C⊥面ABCD,面AA1C1C∩面ABCD=AC,BD⊂面ABCD,BD⊥AC,
∴BD⊥面AA1C1C,AA1⊂面AA1C1C,∴BD⊥AA1;
(Ⅱ)证明:连AE,在Rt△DCO中∠DCO=30°
在正△BCA中,∠BCO=60°,∴DC⊥BC,
又在正△BCA中,AE⊥BC,
∴AE∥DC,
又AE⊄面DCC1D1,DC⊂面DCC1D1,∴AE∥面DCC1D1,
在四棱锥中,AA1∥DD1,AA1⊄面DCC1D1,DD1⊂面DCC1D1,
∴AA1∥面DCC1D1,
又AA1∩AE=A,
∴面A1AE∥面DCC1D1,
又A1E⊂面AA1E,故A1E∥面DCC1D1.
(Ⅲ)解:过E作AC的垂线,设垂足为N,∵面ABCD⊥面AA1C1C,∴EN⊥面AA1C1C,
连A1N,则A1N为A1E在面AA1C1C内的射影,
∴∠EA1N为直线A1E与面AC1所成角,
由已知得:,∴
.
解析
解析已在路上飞奔,马上就到!
知识点
5.已知为不同的直线,
为不同的平面,则下列说法正确的是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
18.如图是正三棱柱,
,
, 若
为棱
中点.
(1)求证:平面
;
(2)求四棱锥的体积.
正确答案
(1)略
(2)
解析
解析已在路上飞奔,马上就到!
知识点
21.如图,在四棱锥中,底面
四边长为
的菱形,
,
,
,
为
的中点,
为
的中点
(1)证明:直线;
(2)求异面直线与
所成角的大小;
正确答案
方法一(综合法)
(1)取OB中点E,连接ME,NE
又
(2)
为异面直线
与
所成的角(或其补角)作
连接
,
所以 与
所成角的大小为
方法二(向量法)作于点P,
如图,分别以AB,AP,AO所在直线为轴建立坐标系,
,
(1)
设平面OCD的法向量为,则n·
,n·
即取
,解得
(2)设与
所成的角为
,
,
与
所成角的大小为
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析