- 裂项相消法求和
- 共32题
19.对于数列,如果存在一个正整数
,使得对任意的
(
)都有
成立,那么就把这样一类数列
称作周期为
的周期数列,
的最小值称作数列
的最小正周期,以下简称周期。例如当
时
是周期为
的周期数列,当
时
是周期为
的周期数列。
(Ⅰ)设数列满足
(
),
(
不同时为0),求证:数列
是周期为
的周期数列,并求数列
的前2013项的和
;
(Ⅱ)设数列的前
项和为
,且
。
①若,试判断数列
是否为周期数列,并说明理由;
②若,试判断数列
是否为周期数列,并说明理由;
(Ⅲ)设数列满足
(
),
,
,数列
的前
项和为
,试问是否存在
,使对任意的
都有
成立,若存在,求出
的取值范围;不存在,说明理由。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
16.已知数列的前
项和为
,且
,则
=_____________.
正确答案
解析
,所以得到
,
,两边化简,然后同除以
得到
,
,所以得到数列
是一个首项为1,公差为2的等差数列,所以
,
考查方向
解题思路
详见解析
易错点
不能够想到,化简后不能想到两边同除以
而构造新的数列。
知识点
18. 已知数列的前
项和为
,点
在直线
上,数列
的前n项和为
,且
,
.
(Ⅰ)求数列,
的通项公式;
(Ⅱ)设,数列
的前
项和为
,求证:
;
正确答案
(1),
;
;(2)见解析.
解析
试题分析:本题属于数列中的基本问题,题目的难度是逐渐由易到难.
解:(Ⅰ)由题意,得 ①
当时,
当时,
②
综上,
又
两式相减,得
数列为等比数列,
.
(Ⅱ)
是递增数列,
考查方向
解题思路
本题考查数列问题,解题步骤如下:
1、利用an与Sn的关系求解。
2、利用等比数列的求和公式求解。
易错点
等比数列分项时项数易错。
知识点
6.定义为
个正数
的“均倒数”,若已知数列
的前
项的“均倒数”为
,又
,则
( )
正确答案
解析
由“均倒数”为得Sn=5n2,则an=10n-5,
=2n-1,
则。A选项不正确,B选项不正确,D选项不正确,所以选C选项。
考查方向
本题主要考查数列的综合运算
解题思路
(1)求出an;(2)求出bn,利用裂项相消法求和,即可得到结果。A选项不正确,B选项不正确,D选项不正确,所以选C选项。
易错点
本题易在求an时发生错误。
知识点
19. 设数列的前
项和
,
,
,且当
时,
.
(1)求证:数列是等比数列,并求数列
的通项公式;
(2)令,记数列
的前
项和为
.设
是整数,问是否存在正整数
,使等式
成立?若存在,求出
和相应的
值;若不存在,说明理由.
正确答案
见解析
解析
解:(1)当时,
,
,
代入并化简得
,
而恒为正值,∴
∴数列是等比数列.
∴.当
时,
,
又,∴
(2)当时,
,此时
,又
∴.
故,
当时,
,
若,
则等式为
,
不是整数,不符合题意;
若,则等式
为
,
∵是整数, ∴
必是
的因数, ∵
时
∴当且仅当时,
是整数,从而
是整数符合题意.
综上可知,当时,存在正整数
,使等式
成立,
当时,不存在正整数
使等式
成立.
考查方向
解题思路
利用,得数列
是等比数列.
易错点
忽略n的范围的讨论。
知识点
扫码查看完整答案与解析