- 统计与统计案例
- 共590题
有一个容量为66的样本,数据的分组及各组的频数如下:
根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是( )
正确答案
解析
知识点
有一个容量为66的样本,数据的分组及各组的频数如下:
根据样本的频率分布估计,大于或等于31.5的数据约占( )
正确答案
解析
知识点
某校高三年级一次数学考试之后,为了解学生的数学学习情况, 随机抽取名学生的数
学成绩, 制成表所示的频率分布表。
(1) 求,
,
的值;
(2) 若从第三, 四, 五组中用分层抽样方法抽取6名学生,并在这6名学生中随机抽取2
名与张老师面谈,求第三组中至少有名学生与张老师面谈的概率。
正确答案
见解析。
解析
(1) 解:依题意,得,
解得,,
,
.
(2) 解:因为第三、四、五组共有60名学生,用分层抽样方法抽取6名学生,
则第三、四、五组分别抽取名,
名,
名.
第三组的名学生记为
,第四组的
名学生记为
,第五组的
名学生记为
,
则从名学生中随机抽取
名,共有
种不同取法,具体如下:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
.
其中第三组的名学生
没有一名学生被抽取的情况共有
种,具体如下:
,
,
.
故第三组中至少有名学生与张老师面谈的概率为
.
知识点
某公司为了了解员工们的健康状况,随机抽取了部分员工作为样本,测量他们的体重(单位:公斤),体重的分组区间为[50,55),[55,60),[60,65),[65,70),[70,75],由此得到样本的频率分布直方图,如图4所示,根据频率分布直方图,估计该公司员工体重的众数是_________;从这部分员工中随机抽取1位员工,则该员工的体重在[65,75]的概率是_________。
正确答案
解析
众数是,∵各分组频率分别为0.15,0.25,0.3,0.2,0.1,∴该员工的体重在[65,75]的概率是
。
知识点
某校高三(1)班共有名学生,他们每天自主学习的时间全部在
分钟到
分钟之间,按他们学习时间的长短分
个组统计,得到如下频率分布表:
(1)求分布表中,
的值;
(2)王老师为完成一项研究,按学习时间用分层抽样的方法从这名学生中抽取
名进行研究,问应抽取多少名第一组的学生?
(3)已知第一组学生中男、女生人数相同,在(2)的条件下抽取的第一组学生中,既有男生又有女生的概率是多少?
正确答案
见解析。
解析
(1),
,
(2)设应抽取名第一组的学生,则
得
。
故应抽取2名第一组的学生,
(3)在(2)的条件下应抽取2名第一组的学生,记第一组中2名男生为,2名女生为
。
按时间用分层抽样的方法抽取2名第一组的学生共有种结果,列举如下:
,
其中既有男生又有女生被抽中的有这4种结果,
所以既有男生又有女生被抽中的概率为.
知识点
从某项综合能力测试中抽取50人的成绩,统计如表,则这50人成绩的平均数等于 ▲ 、方差为 ▲ .
正确答案
3;
解析
知识点
某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了n人,回答问题统计结果如下图表所示:
(1)分别求出a,b,x,y的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组各抽取多少人?
(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率。
正确答案
见解析。
解析
(1)由频率表中第1组数据可知,第1组总人数为,
再结合频率分布直方图可知.
∴a=100×0.020×10×0.9=18,
b=100×0.025×10×0.36=9,
,
(2)第2,3,4组中回答正确的共有54人。
∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:
第2组:人,
第3组:人,
第4组:人。
(3)设第2组的2人为、
,第3组的3人为
、
、
,第4组的1人为
,
则从6人中抽2人所有可能的结果有:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,共15个基本事件,
其中第2组至少有1人被抽中的有,
,
,
,
,
,
,
,
这9个基本事件。
∴第2组至少有1人获得幸运奖的概率为
知识点
某单位名员工参加“社区低碳你我他”活动,他们
的年龄在25岁至50岁之间,按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图
如图5所示,下表是年龄的频率分布表。
(1)求正整数,
,
的值;
(2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?
(3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率。
正确答案
见解析。
解析
解:(1)由频率分布直方图可知,与
两组的人数相同,
所以人,
且人。
总人数人,
(2)因为第1,2,3组共有25+25+100=150人,利用分层抽样在150名员工中抽取人,每组抽取的人数分别为:
第1组的人数为,
第2组的人数为,
第3组的人数为,
所以第1,2,3组分别抽取1人,1人,4人,
(3)由(2)可设第1组的1人为,第2组的1人为
,第3组的4人分别为
,则从6人中抽取2人的所有可能结果为:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,共有
种,
其中恰有1人年龄在第3组的所有结果为:
,
,
,
,
,
,
,
,共有8种。
所以恰有1人年龄在第3组的概率为,
知识点
某校高三(1)班共有名学生,他们每天自主学习的时间全部在
分钟到
分钟之间,按他们学习时间的长短分
个组统计,得到如下频率分布表:
(1)求分布表中,
的值;
(2)王老师为完成一项研究,按学习时间用分层抽样的方法从这名学生中抽取
名进行研究,问应抽取多少名第一组的学生?
(3)已知第一组学生中男、女生人数相同,在(2)的条件下抽取的第一组学生中,既有男生又有女生的概率是多少?
正确答案
见解析。
解析
(1),
,
(2)设应抽取名第一组的学生,则
得
。
故应抽取2名第一组的学生,
(3)在(2)的条件下应抽取2名第一组的学生,记第一组中2名男生为,2名女生为
。
按时间用分层抽样的方法抽取2名第一组的学生共有种结果,列举如下:
,
其中既有男生又有女生被抽中的有这4种结果,
所以既有男生又有女生被抽中的概率为.
知识点
某中学高三实验班的一次数学测试成绩的茎叶图(图3)和频率分布直方图(图4)都受到不同程度的破坏,可见部分如下图所示,据此解答如下问题。
(1)求全班人数及分数在之间的频数;
(2)计算频率分布直方图中的矩形的高;
(3)若要从分数在[80,100]之间的试卷中任取两份分析学生的答题情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率。
正确答案
见解析。
解析
(1)由茎叶图可知,分数在之间的频数为2,频率为
,所以全班人数为
(人) 故分数在
之间的频数为
.
(2) 分数在之间的频数为4, 频率为
所以频率分布直方图中的矩形的高为
(3)用表示
之间的4个分数,用
表示
之间的2个分数,则满足条件的所有基本事件为:
,
,
,
,
共15个,
其中满足条件的基本事件有:
,
,
共9个
所以至少有一份分数在[90,100]之间的概率为.
知识点
扫码查看完整答案与解析