- 用样本的数字特征估计总体的数字特征
- 共5题
甲、乙两人投篮命中的概率分别为与,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.
31.求比赛结束后甲的进球数比乙的进球数多1个的概率;
32.设ξ表示比赛结束后甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E(ξ).
正确答案
(1);
解析
(1)比赛结束后甲的进球数比乙的进球数多1个有以下几种情况:
甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球.
所以比赛结束后甲的进球数比乙的进球数多1个的概率
P=.
考查方向
解题思路
本题考查概率的求法,解题步骤如下:
(1)比赛结束后甲的进球数比乙的进球数多1个,有以下几种情况:甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球.由此能求出比赛结束后甲的进球数比乙的进球数多1个的概
率.
易错点
解题时要认真审题,注意n次独立重复试验中事件A恰好发生k次的概率计算公式的合理运用.
正确答案
(2)E(ξ)=1
解析
(2)ξ的取值为0,1,2,3,所以 ξ的概率分布列为
所以数学期望E(ξ)==1.
考查方向
解题思路
本题考查概率的求法,解题步骤如下:
(2)由已知得ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和Eξ.
易错点
解题时要认真审题,注意n次独立重复试验中事件A恰好发生k次的概率计算公式的合理运用.
某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了人,回答问题统计结果如图表所示.
19.分别求出的值;
20.从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?
21.在20题的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.
正确答案
见解析
解析
第1组人数, 所以, 第2组人数,所以, 第3组人数,所以, 第4组人数,所以 第5组人数,所以
考查方向
解题思路
图和表相互结合求得
易错点
计算错误;读取数据时有遗漏
正确答案
见解析
解析
第2,3,4组回答正确的人的比为,所以第2,3,4组每组应各依次抽取人,人,1人
考查方向
解题思路
图和表相互结合求得
易错点
计算错误;读取数据时有遗漏
正确答案
见解析
解析
记抽取的6人中,第2组的记为,第3组的记为,第4组的记为, 则从6名学生中任取2名的所有可能的情况有15种,它们是: ,,,,, ,,,, ,,, ,, 其中第2组至少有1人的情况有9种,它们是: ,,,,,,,,
故所求概率为 。
考查方向
解题思路
图和表相互结合求得
易错点
计算错误;读取数据时有遗漏
某校高二年级共有学生1000名,其中走读生750名,住宿生250名,现采用分层抽样的方法从该年级抽取100名学生进行问卷调查.根据问卷取得了这100名学生每天晚上有效学习时间(单位:分钟)的数据,按照以下区间分为八组:①[0,30),② [30,60),③[60,90),④[90, 120),……得到频率分布直方图(部分)如图(4).
19.如果把“学生晚上有效时间达到两小时”作为是否充分利用时间的标准,对抽取的100名学生,完成下列2×2列联表;并判断是否有95%的把握认为学生利用时间是否充分与走读、住宿有关?
20.若在第①组、第②组、第③组中共抽出3人调查影响有效利用时间的原因,记抽到“有效学习时间少于60分钟”的学生人数为X,求X的分布列和数学期望.
正确答案
(1)
由于K2>3.841,所以有95%的把握认为学生利用时间是否充分与走读、住宿有关
解析
解:(1)
K2=≈5.556
由于K2>3.841,所以有95%的把握认为学生利用时间是否充分与走读、住宿有关
考查方向
解题思路
(1)根据走读生和住宿生的样本数完成表格,并由表格计算K2确定相关程度
(2)首先计算出第①组、第②组、第③组各抽取的人数,再确定随机变量X的所有可能取值并计算其概率完成分布列,最后计算数学期望。
易错点
各组人数的确定和离散型随机变量的概率的计算
正确答案
(2)
解析
(2)设第i组的频率为Pi(i=1,2,…,8),则由图可知:P1=×30=,P2=×30= ,P3=×30=,可得:第①组1人,第②组4人,第③组10人。
则X的所有可能取值为0,1,2,3,
的分布列为:
(或由X服从超几何分布,
考查方向
解题思路
(1)根据走读生和住宿生的样本数完成表格,并由表格计算K2确定相关程度
(2)首先计算出第①组、第②组、第③组各抽取的人数,再确定随机变量X的所有可能取值并计算其概率完成分布列,最后计算数学期望。
易错点
各组人数的确定和离散型随机变量的概率的计算
国内某知名大学有男生14000人,女生10000人.该校体育学院想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取120人,统计他们平均每天运动的时间,如下表:(平均每天运动的时间单位:小时,该校学生平均每天运动的时间范围是.)
男生平均每天运动的时间分布情况:
女生平均每天运动的时间分布情况:
19.请根据样本估算该校男生平均每天运动的时间(结果精确到);
20.若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生
为“非运动达人”.
①请根据样本估算该校“运动达人”的数量;
②请根据上述表格中的统计数据填写下面列联表,并通过计算判断能否在犯错
误的概率不超过的前提下认为“是否为‘运动达人’与性别有关?”
参考公式:,其中
参考数据:
正确答案
(1) 小时;
解析
(Ⅰ)由分层抽样得:男生抽取的人数为人,女生抽取人数为人,故5,2,
则该校男生平均每天运动的时间为:
,
故该校男生平均每天运动的时间约为小时;
考查方向
解题思路
根据题中给出的数据估计该校男生平均每天运动的时间约为小时;
易错点
不会根据频率分布直方图估计平均数;
正确答案
(2) ①4000;
②故在犯错误的概率不超过的前提下不能认为“是否为‘运动达人’与性别有关”
解析
(Ⅱ)①样本中“运动达人”所占比例是,故估计该校“运动达人”有
人;
②由表格可知:
故的观测值
故在犯错误的概率不超过的前提下不能认为“是否为‘运动达人’与性别有关”.
考查方向
解题思路
先列出列联表后计算判断即可。
易错点
处理数据列列联表出错。
12.为了了解学生遵守《中华人民共和国交通安全法》的情况,调查部门在某学校进行了如下的随机调查:向被调查者提出两个问题:
(1)你的学号是奇数吗?
(2)在过路口的时候你是否闯过红灯?
要求被调查者背对调查人抛掷一枚硬币,如果出现正面,就回答第(1)个问题;否则就回答第(2)个问题。被调查者不必告诉调查人员自己回答的是哪一个问题,只需要回答“是”或“不是”,因为只有被调查本人知道回答了哪个问题,所以都如实做了回答。如果被调查的600人(学号从1到600)中有180人回答了“是”,由此可以估计在这600人中闯过红灯的人数是( )。
正确答案
60
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析