- 带电粒子在匀强电场中的运动
- 共205题
5.如图所示,匀强电场中有一个以O为圆心、半径为R的圆,电场方向与圆所在平面平行,A、O两点电势差为U,一带正电的粒子在该电场中运动,经A、B两点时速度方向沿圆的切线,速度大小均为v0,粒子重力不计,只受电场力,则下列说法正确的是( )
正确答案
解析
A、带电粒子仅在电场力作用下,由于粒子在A、B两点动能相等,则电势能也相等.因为匀强电场,所以两点的连线AB即为等势面.根据等势面与电场线垂直特性,从而画出电场线CO.由曲线运动条件可知,正电粒子所受的电场力沿着CO方向,因此粒子从A到B做抛体运动,速度方向与电场力方向夹角先大于90°后小于90°,电场力对于运动来说先是阻力后是动力,所以动能先减小后增大.故AC错误;
C、匀强电场的电场强度Ed=U式中的d是沿着电场强度方向的距离,因而由几何关系可知,UAO=E×,所以E=
,圆周上电势最高的点与O点的电势差为U=ER=
,故B正确,D错误;
考查方向
解题思路
带正电粒子仅在电场力作用下,从A运动到B,由速度大小,得出粒子的动能,从而确定粒子的电势能大与小.由于匀强电场,则等势面是平行且等间距.根据曲线运动条件可从而确定电场力的方向,从而得出匀强电场的电场线方向.
易错点
根据曲线运动来判断电场力的方向,根据等势线判断电场线的方法
知识点
7.如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m (不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=30°,孔Q到板的下端C的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,则:( )
正确答案
解析
(1)M、N两板间电压取最大值时,粒子恰垂直打在CD板上,所以圆心在C点,CH=QC=L,故半径R1=L又因qvB=m,qUm=
所以Um=
,A错
(2)如果没有加速,粒子将会沿着直线运动,则,
化简则
最近的点在K,则AQ+AC=L,AC=2AK=2r,所以
,即
,因此CD板上可能被粒子打中区域的长度S=
,B正确。
(3)打在QE间的粒子在磁场中运动的时间最长,均为半周期:T=所以
,C错。
(4)打在N上,则,
,最大半径为
,带入,则D正确
考查方向
解题思路
(1)粒子恰好垂直打在CD板上,根据粒子的运动的轨迹,可以求得粒子运动的半径,由半径公式可以求得电压的大小;
(2)当粒子的运动的轨迹恰好与CD板相切时,这是粒子能达到的最下边的边缘,在由几何关系可以求得被粒子打中的区域的长度.
(3)打在QE间的粒子在磁场中运动的时间最长,均为半周期,根据周期公式即可求解.
易错点
带电离子在磁场中的运动轨迹的几何关系
知识点
如图,直角坐标系xOy的y轴竖直向上,在整个空间区域 内存在平行于xOy平面的匀强电场,在y<0的区域内还存在垂直于xOy平面的匀强磁场。现有一带正电的小颗粒,电荷量q=2×10-7C,质量m=1.5×10-5kg,
从坐标原点O射出,射出时的初动能E0=1×10-4J。小颗粒先后经过P(0.5,0)、Q(0.3,0.4)两点,经过P点时动能为0.4E0,经过Q点时动能也为0.4E0。重力加速度大小g取10m/s2。求
24.O、P两点间的电势差UOP;
25.匀强电场的场强E的大小和方向。
正确答案
解析
考查方向
解题思路
1、有动能定理求得O、P两点的电势差。2、可求出O、P、Q三点的电势然后找出等势点,由电场场强方向垂直于等势线可得到场强。
易错点
动能定理运用时,正负问题。
正确答案
电场方向与OQ连线垂直,沿左上方。
解析
带电小颗粒从O到Q,由动能定理有
③
由③式得,O点与Q点电势相等
如图,由几何关系得:P点到OQ连线的距离d=0.4 m ④
根据匀强电场中场强与电势差关系得
⑤
电场方向与OQ连线垂直,沿左上方。
考查方向
解题思路
1、有动能定理求得O、P两点的电势差。2、可求出O、P、Q三点的电势然后找出等势点,由电场场强方向垂直于等势线可得到场强。
易错点
动能定理运用时,正负问题。
21.如图所示,圆形区域内以直线AB为分界线,上半圆内有垂直纸面向里的匀强磁场,磁感应强度大小为B。下半圆内有垂直纸面向外的匀强磁场,磁感应强度大小未知,圆的半径为R。在磁场左侧有一粒子水平加速器,质量为m,电量大小为q的粒子在极板M右侧附近,由静止释放,在电场力的作用下加速,以一定的速度沿直线CD射入磁场,直线CD与直径AB距离为0.6R。粒子在AB上方磁场中偏转后,恰能垂直直径AB进入下面的磁场,之后在AB下方磁场中偏转后恰好从O点进入AB上方的磁场。则(带电粒子的重力不计):
正确答案
解析
考查方向
解题思路
根据洛伦兹力判定粒子的电性。首先根据几何知识,找出带电粒子运动轨迹和两个磁场中的不同的半径。再根据洛伦兹力提供向心力:qvB=,计算出带电粒子运动的速率,进而根据功能关系求出加速器电压。根据qvB=,求出下面磁场的磁感应强度。
易错点
对带电粒子匀速圆周运动的几何轨不清楚。
知识点
8.如图所示,相距为L的两块平行金属板从M、N接在输出电压恒为U的高压电源E2上,M、N之间的电场可视为匀强电场,K是与M板距离很近的灯丝,电源E1给K加热从而产生初速度可以忽略不计的热电子.电源E2接通后,电流表的示数稳定为I,已知电子的质量为m、电量为e。则下列说法正确的是()
正确答案
解析
(1)动能定理:,
解出,A对
(2)牛顿定律:e=ma,
解出
由
得:,B错
(3)根据功能关系,在M、N之间运动的热电子的总动能应等于t时间内电流做功的,即Ek总=
UIt=
UI(
)=IL
,C错
(4),所以D对
考查方向
解题思路
(1)根据动能定理求出电子到达N板瞬间的速度大小.
(2)通过牛顿第二定律和运动学公式求出电子从灯丝K出发达到N板所经历的时间.
(3)在M、N之间运动的热电子的总动能应等于t时间内电流做功的,结合功能关系求出电路稳定的某时刻,M、N之间运动的热电子的总动能;
(4)分别求出电子从灯丝出发达到c和d的时间,从而结合电流公式求出电路稳定的某时刻,c、d两个等势面之间具有的电子数.
易错点
本题考查了动能定理、牛顿第二定律和运动学公式的综合运用,关键要正确建立物理模型,依据相关物理规律求解
知识点
扫码查看完整答案与解析