热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 18 分

如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l=0.5 m,左端接有阻值R=0.3 Ω的电阻,一质量m=0.1 kg,电阻r=0.1 Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4 T,棒在水平向右的外力作用下,由静止开始以a=2 m/s2的加速度做匀加速运动,当棒的位移x=9 m时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1∶Q2=2∶1,导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触,求

(1)棒在匀加速运动过程中,通过电阻R的电荷量q;

(2)撤去外力后回路中产生的焦耳热Q2

(3)外力做的功WF

正确答案

(1)4.5 C 

(2)1.8 J 

(3)5.4 J

解析

(1)设棒匀加速运动的时间为t,回路的磁通量变化量为Φ,回路中的平均感应电动势为,由法拉第电磁感应定律得

其中Φ=Blx②

设回路中的平均电流为,由闭合电路的欧姆定律得

则通过电阻R的电荷量为

联立①②③④式,代入数据得q=4.5 C⑤

(2)设撤去外力时棒的速度为v,对棒的匀加速运动过程,由运动学公式得v2=2ax⑥

设棒在撤去外力后的运动过程中安培力做功为W,由动能定理得W=0-mv2

撤去外力后回路中产生的焦耳热

Q2=-W⑧

联立⑥⑦⑧式,代入数据得

Q2=1.8 J⑨

(3)由题意知,撤去外力前后回路中产生的焦耳热之比Q1∶Q2=2∶1,可得Q1=3.6 J⑩

在棒运动的整个过程中,由功能关系可知WF=Q1+Q2

由⑨⑩⑪式得WF=5.4 J。

知识点

法拉第电磁感应定律电磁感应中的能量转化
1
题型: 多选题
|
多选题 · 6 分

7.如图所示,边长为L、总电阻为R的均匀正方形线框abcd放置在光滑水平桌面上,其cd边右侧紧邻两个磁感应强度为B、宽度为L、方向相反的有界匀强磁场。现使线框以速度v0匀速通过磁场区域,从开始进入,到完全离开磁场的过程中,下列图线能定性反映线框中的感应电流(以逆时针方向为正)和a、b两点间的电势差随时间变化关系的是

A

B.

C

D

正确答案

A,C

解析

线圈进入左侧磁场过程:在进入磁场0﹣L的过程中,E=BLv0,电流I==i0,方向为逆时针方向,为正;

a的电势比b的电势高,ab间的电势差 Uab=E=BLv0=u0

在L﹣2L的过程中,电动势E=2BLv0,电流I==2i0,方向为顺时针方向,为负.a的电势比b的电势高,ab间的电势差 Uab=E=BLv0=2u0

在2L﹣3L的过程中,E=BLv0,电流I==i0,方向为逆时针方向,为正;a的电势比b的电势低,ab间的电势差 Uab=﹣E=﹣BLv0=﹣3u0

故AC正确,BD错误.

故选:AC.

考查方向

导体切割磁感线时的感应电动势

解题思路

由E=BLv求出感应电动势,由欧姆定律求出感应电流和ab间的电压,然后选择图象.要分段研究

易错点

本题的关键掌握切割产生的感应电动势公式以及安培力的大小公式,会通过楞次定律判断感应电流的方向

知识点

闭合电路的欧姆定律法拉第电磁感应定律楞次定律
1
题型: 单选题
|
单选题 · 6 分

2.图甲为水平放置的两根平行光滑导轨,处在垂直轨道平面向里的匀强磁场中。均匀金属棒AB垂直于导轨水平静止放置。从t=0时刻开始在AB棒上通有图乙所示的交变电流,规定甲图所示的电流方向为正方向。下列说法正确的是(   )

A金属棒将在某一范围内往复运动

Bt1时刻导体棒的速度最大

Ct2时刻导体棒的加速度最大

D安培力时而做正功,时而做负功

正确答案

D

解析

根据左手定则可知,当电流的方向向下时,棒受到的安培力的方向向右;同理,当电流的方向向上上,则棒受到的安培力的方向向左.

A、由于电流随时间按照正弦规律变化,而安培力:F=BIL与电流成正比,所以导体棒受到的安培力也随时间按照正弦规律变化,在前半个周期内(0﹣t2时间内)棒受到的安培力的方向向右,所以棒向右做加速运动;在后半个周期内棒受到的安培力的方向向左,将向右做减速运动,由于加速阶段的加速度和减速阶段的加速度具有对称性,所以由运动的对称性可知,当t=t4时刻棒的速度恰好为0;而后,在以后的歌周期内棒将不断重复第一个周期内的运动.所以棒将一直向右运动.故A错误;

B、导体棒在前半个周期内(0﹣t2时间内)棒受到的安培力的方向向右,所以棒向右做加速运动,后半个周期内棒受到的安培力的方向向左,将向右做减速运动,所以t2时刻导体棒的速度最大.故B错误;

C、由于安培力:F=BIL与电流成正比,所以导体棒受到的安培力也随时间按照正弦规律变化,在t1时刻导体棒受到的安培力最大,所以加速度最大.故C错误;

D、导体棒一直向右运动,前半个周期内(0﹣t2时间内)棒受到的安培力的方向向右,安培力做正功;后半个周期内棒受到的安培力的方向向左,安培力做负功.故D正确.

故选:D

考查方向

安培力;牛顿第二定律

解题思路

根据F=BIL分析安培力随电流的变化关系,由牛顿第二定律分析导体棒的加速度的变化,结合运动的对称性分析导体棒运动的规律即可.

易错点

该题结合安培力随电流变化的规律,考查牛顿第二定律的瞬时性的理解与应用能力,解答该题,关键要从运动的对称性来考虑,明确在t=t4时刻导体棒的速度为0.

知识点

通电直导线在磁场中受到的力法拉第电磁感应定律
1
题型: 多选题
|
多选题 · 6 分

6.如图(甲),水平面上的平行金属导轨MNPQ上放着两根导体棒abcd,两棒间用绝缘丝线系住。刚开始时匀强磁场垂直纸面向里,磁感强度B随时间t的变化如图(乙)所示。若用I表示流过导体棒ab的电流强度,T表示丝线对导体棒ab的拉力。则 在t0时刻 ()

AI=0

BI≠0且I的方向为b→a

C T= 0

D T≠0且T的方向水平向右

正确答案

B,D

解析

由图乙所示图象可知,0到t0时间内,磁场向里,磁感应强度B均匀减小,线圈中磁通量均匀减小,由法拉第电磁感应定律得知,回路中产生恒定的感应电动势,形成恒定的电流.由楞次定律可得出电流方向沿acbda,在t0时刻导体棒ab中不为零,A错,B对;根据左手定责可知,ab导线中安培力想做,所以T的方向应该水平向右,C错,D对。

考查方向

导体切割磁感线时的感应电动势;安培力,受力分析

解题思路

由乙图看出,磁感应强度均匀变化,由法拉第电磁感应定律可得出线圈中将产生感应电流,由楞次定律可判断感应电流的方向及ab、cd受到的安培力方向,则可分析丝线上的拉力.

易错点

当穿过回路的磁通量随时间作均匀变化时,回路中产生恒定的电动势,电路闭合时产生恒定电流

知识点

法拉第电磁感应定律楞次定律
1
题型:简答题
|
简答题 · 16 分

如图1所示,匀强磁场的磁感应强度B为0.5T,其方向垂直于倾角θ为300的斜面向上。绝缘斜面上固定有“Λ”形状的光滑金属导轨MPN(电阻忽略不计),MP和NP长度均为2.5m。MN连线水平。长为3m。以MN的中点O为原点、OP为x轴建立一坐标系Ox。一根粗细均匀的金属杆CD,长度d为3m,质量m为1kg,电阻R为0.3Ω,在拉力F的作用下,从MN处以恒定的速度v=1m/s在导轨上沿x轴正向运动(金属杆与导轨接触良好)。g取10m/s2

(1)求金属杆CD运动过程中产生的感应电动势E及运动到x=0.8m电势差UCD

(2)推导金属杆CD从MN处运动到P点过程中拉力F与位置坐标x的关系式,并在图2中画出F-x关系图象;

(3)求金属杆CD从MN处运动到P点的全过程产生的焦耳热。

正确答案

(1)1.5V  -0.6V  (2) ,如图 (3)7.5J

解析

(1)金属杆CD在匀速运动中产生的感应电动势

  (D点电势高)

当x=0.8m时,金属杆在导轨间的电势差为零。设此时杆在导轨外的长度为,则

由楞次定律判断D点电势高,故CD两端电势差

(2)杆在导轨间的长度l与位置x关系是 

对应的电阻Rl为       电流 

杆受安培力F为 

根据平衡条件得  

画出的F-x图象如图所示。

(3)外力F所做的功WF等于F-x图线下所围成的面积,即

而杆的重力势能增加量

故全过程产生的焦耳热

知识点

感生电动势、动生电动势电磁感应中的能量转化
1
题型:简答题
|
简答题 · 15 分

如图,两根足够长的金属导轨ab、cd竖直放置,导轨间距离为L,电阻不计。在导轨上端并接两个额定功率均为P、电阻均为R的小灯泡。整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直。现将一质量为m、电阻可以忽略的金属棒MN从图示位置由静止开始释放。金属棒下落过程中保持水平,且与导轨接触良好。已知某时刻后两灯泡保持正常发光。重力加速度为g。求:

(1)磁感应强度的大小;

(2)灯泡正常发光时导体棒的运动速率。

正确答案

(1)设小灯泡的额定电流I0,有:P=I02R①

由题意,在金属棒沿着导轨竖直下落的某时刻后,小灯泡保持正常发光,流经MN的电流为 I=2I0

此时刻金属棒MN所受的重力和安培力相等,下落的速度达到最大值,有 mg=BLI③

联立①②③式得

(2)设灯泡正常发光时,导体棒的速率为v,由电磁感应定律与欧姆定律得

E=BLv⑤

E=RI0

联立①②④⑤⑥式得 v=

解析

略。

知识点

法拉第电磁感应定律电磁感应中的能量转化
1
题型: 多选题
|
多选题 · 6 分

19.  1824年,法国科学家阿拉果完成了著名的“圆盘实验”,实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示。实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后。下列说法正确的是()

AA.圆盘上产生了感应电动势

BB.圆盘内的涡电流产生的磁场导致磁针转动

CC.在圆盘转动过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化

DD.在圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动

正确答案

A,D

解析

解析已在路上飞奔,马上就到!

知识点

法拉第电磁感应定律
1
题型: 单选题
|
单选题 · 6 分

如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个边长相等的单匝闭合正方形线圈Ⅰ和Ⅱ,分别用相同材料,不同粗细的导线绕制(Ⅰ为细导线)。两线圈在距磁场上界面高处由静止开始自由下落,再进入磁场,最后落到地面。运动过程中,线圈平面始终保持在竖直平面内且下边缘平行于磁场上边界。设线圈Ⅰ、Ⅱ落地时的速度大小分别为v1、v2,在磁场中运动时产生的热量分别为Q1、Q2。不计空气阻力,则

Av1 <v2,Q1< Q2          

Bv1 =v2,Q1= Q2

Cv1 <v2,Q1>Q2          

Dv1 =v2,Q1< Q2

正确答案

D

解析

由于从同一高度下落,到达磁场边界时具有相同的速度v,切割磁感线产生感应电流同时受到磁场的安培力,又(ρ为材料的电阻率,为线圈的边长,S为单匝导线横截面积),所以安培力,此时加速度,且(为材料的密度),所以加速度是定值,线圈Ⅰ和Ⅱ同步运动,落地速度相等v1 =v2。由能量守恒可得:,(H是磁场区域的高度),Ⅰ为细导线m小,产生的热量小,所以Q1< Q2。正确选项D。

知识点

电磁感应中的能量转化
1
题型:简答题
|
简答题 · 15 分

如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L,长为3d,导轨平面与水平面的夹角为θ,在导轨的中部刷有一段长为d的薄绝缘涂层。匀强磁场的磁感应强度大小为B,方向与导轨平面垂直。质量为m的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端。导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为R,其他部分的电阻均不计,重力加速度为g。求:

(1)导体棒与涂层间的动摩擦因数μ;

(2)导体棒匀速运动的速度大小v;

(3)整个运动过程中,电阻产生的焦耳热Q。

正确答案

答案:(1)(2)(3)

解析

(1)在绝缘涂层上

受力平衡

解得

(2)在光滑导轨上

感应电动势   感应电流

安培力  受力平衡

解得

(3)摩擦生热

能量守恒定律

解得

知识点

通电直导线在磁场中受到的力电磁感应中的能量转化
1
题型:简答题
|
简答题 · 18 分

如图所示,质量,电阻,长度的导体棒横放在U型金属框架上。框架质量,放在绝缘水平面上,与水平面间的动摩擦因数,相距0.4m的相互平行,电阻不计且足够长。电阻垂直于。整个装置处于竖直向上的匀强磁场中,磁感应强度。垂直于施加的水平恒力,从静止开始无摩擦地运动,始终与保持良好接触。当运动到某处时,框架开始运动。设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10m/s2

(1)求框架开始运动时速度v的大小;

(2)从开始运动到框架开始运动的过程中,上产生的热量,求该过程位移x的大小。

正确答案

(1)6m/s  (2)1.1m

解析

(1)ab对框架的压力    

框架受水平面的支持力…②

依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力

ab中的感应电动势E=

MN中电流     ⑤

MN受到的安培力

框架开始运动时…⑦

由上述各式代入数据解得v=6m/s⑧

(2)闭合回路中产生的总热量:

由能量守恒定律,得:

代入数据解得x=1.1m⑾

知识点

法拉第电磁感应定律电磁感应中的能量转化
1
题型: 单选题
|
单选题 · 6 分

如图,足够长的U型光滑金属导轨平面与水平面成θ角(0 <θ <90°),其中MN与PQ平行且间距为L,导轨平面与磁感应强度为B的匀强磁场垂直,导轨电阻不计。金属棒ab由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab棒接入电路的电阻为R,当流过ab棒某一横截面的电量为q时,棒的速度大小为v,则金属棒ab在这一过程中

A运动的平均速度大小为

B下滑位移大小为

C产生的焦耳热为qBLv

D受到的最大安培力大小为

正确答案

B

解析

分析棒的受力有mgsinθ-= ma,可见棒做加速度减小的加速运动,只有在匀变速运动中平均速度才等于初末速度的平均值,A错。设沿斜面下滑的位移为s,则电荷量q = ,解得位移s = ,B正确。根据能量守恒,产生的焦耳热等于棒机械能的减少量,Q = mgssinθ-。棒受到的最大安培力为

知识点

功能关系通电直导线在磁场中受到的力电磁感应中的能量转化
1
题型: 单选题
|
单选题 · 6 分

如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5m,电阻忽略不计,其上端接一小灯泡,电阻为1Ω。一导体棒MV垂直于导轨放置,质量为0.2kg,接入电路的电阻为1Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8T。将导体棒MV由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MV的运动速度以及小灯泡消耗的电功率分别为(重力加速度g取10m/s2,sin37°=0.6)

A2.5m/s  1W

B5m/s  1W

C7.5m/s  9W

D15m/s  9W

正确答案

B

解析

导体棒匀速下滑,则受力

,得;电功率的总功率,灯泡与导体棒功率相同,可解的,选项B正确。

知识点

电磁感应中的能量转化
1
题型: 单选题
|
单选题 · 6 分

如图所示,纸面内有一矩形导体闭合线框动abcd,ab边长大于bc边长,置于垂直纸面向里、边界为MN的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN。第一次ab边平行MN进入磁场,线框上产生的热量为Q1,通过线框导体横截面的电荷量为q1:第二次bc边平行MN进入磁场,线框上产生的热量为Q2,通过线框导体横截面的电荷量为q2,则

AQ1>Q2 q1=q2

BQ1>Q2 q1>q2

CQ1=Q2 q1=q2

DQ1=Q2  q1>q2

正确答案

A

解析

本题考察电磁感应相关基础知识及推论。  设ab和bc边长分别为lab,lbc, ,则lab>lbc,由于两次“穿越”过程均为相同速率穿过,若假设穿过磁场区域的速度为v,则有Q1=|W安1| = B2l2 ab vR ·lbc ,q1=It = ΔΦ R =Blab·lbc R ;同理可以求得Q2=|W安2 | =  B2l2 bc vR ·lab ,q2=It = ΔΦ R =Blab·lbc R ;观察可知Q1>Q2,q1=q2,A选项正确。

知识点

法拉第电磁感应定律电磁感应中的能量转化
1
题型:简答题
|
简答题 · 13 分

如图,水平面内有一光滑金属导轨,其MN、PQ边的电阻不计,MP边的电阻阻值R=1.5, MN与MP的夹角为1350, PQ与MP垂直,MP边长度小于1m。将质量m=2kg,电阻不计的足够长直导体棒搁在导轨上,并与MP平行。棒与MN、PQ交点G、 H间的距离L=4m。空间存在垂直于导轨平面的匀强磁场,磁感应强度B=0.5T。在外力作用下,棒由GH处以一定的初速度向左做直线运动,运动时回路中的电流强度始终与初始时的电流强度相等。

(1)若初速度v1=3m/s,求棒在GH处所受的安培力大小FA.

(2)若初速度v2=1.5m/s,求棒向左移动距离2m到达EF所需时间t。

(3)在棒由GH处向左移动2m到达EF处的过程中,外力做功W=7J,求初速度v3

正确答案

(1)8N;(2)1s;(3)1m/s

解析

(1)棒在GH处速度为v1,因此由此得

(2)设棒移动距离a,由几何关系EF间距也为a,磁通量变化

题设运动时回路中电流保持不变,即感应电动势不变,有:

因此    

解得     

(3)设外力做功为W,克服安培力做功为WA,导体棒在EF处的速度为v’3

由动能定理:

克服安培力做功:

式中    

联立解得:

由于电流始终不变,有:

因此     

代入数值得    

解得    (舍去)

知识点

通电直导线在磁场中受到的力电磁感应中的能量转化
1
题型:简答题
|
简答题 · 14 分

如图,宽度为L=0.5m的光滑金属框架MNPQ固定于水平面内,并处在磁感应强度大小B=0.4T,方向竖直向下的匀强磁场中,框架的电阻非均匀分布,将质量m=0.1kg,电阻可忽略的金属棒ab放置在框架上,并与框架接触良好,以P为坐标原点,PQ方向为x轴正方向建立坐标,金属棒从x0=1m处以v0=2m/s的初速度,沿x轴负方向做a=2m/s2的匀减速直线运动,运动中金属棒仅受安培力作用,求:

(1)金属棒ab运动0.5m,框架产生的焦耳热Q;

(2)框架中aNPb部分的电阻R随金属棒ab的位置x变化的函数关系;

(3)为求金属棒ab沿x轴负方向运动0.4s过程中通过ab的电量q,某同学解法为:先算出经过0.4s金属棒的运动距离s,以及0.4s时回路内的电阻R,然后代入q==求解,指出该同学解法的错误之处,并用正确的方法解出结果。

正确答案

(1)金属棒ab运动0.5m,框架产生的焦耳热Q是0.1J;

(2)框架中aNPb部分的电阻R随金属棒ab的位置x变化的函数关系是R=0.4(Ω);

(3)错误之处是把0.4s时回路内的电阻R代入q=进行计算,而框架的电阻是非均匀分布的,0.4s过程中通过ab的电量q是0.4C。

解析

(1)通过受力分析得:

金属棒仅受安培力作用,其大小F=ma=0.2N,

金属棒运动0.5m,因为安培力做功量度外界的能量转化成电能

所以框架中间生的焦耳热等于克服安培力做的功,

所以Q=Fs=0.1J。

(2)金属棒所受安培力为F=BIL,

感应电流I==

F==ma,

由于棒做匀减速运动,根据运动学公式得:v=

所以R==0.4   (Ω),

(3)错误之处是把0.4s时回路内的电阻R代入q=进行计算,而框架的电阻是非均匀分布的,正确解法是:q=It,因为安培力F=BIL=ma,q==0.4C。

知识点

电磁感应中的能量转化
下一知识点 : 光学
百度题库 > 高考 > 物理 > 电磁学

扫码查看完整答案与解析

  • 上一题
  • 1/15
  • 下一题