- 等差数列与等比数列的综合
- 共63题
19. 已知单调递增的等比数列满足
,且
是
的等差中项.
(I)求数列的通项公式;
(II)设,其前n项和为
,若
对于
恒成立,求实数m的取值范围.
正确答案
(1);
(2)
解析
试题分析:本题属于数列应用中的基本问题,题目的难度是逐渐由易到难,直接按照步骤来求
(Ⅰ)设等比数列的首项为
,公比为
由题意可知:,
∴
所以.得
(Ⅱ)令
相减得
若对于
恒成立,即
恒成立,即
令则可知其为减函数,故
考查方向
解题思路
本题考查数列的性质,解题步骤如下:
1、利用基本量法求出通项;
2、利用错位相减法求和,恒成立问题转为最值问题
易错点
第一问中的辅助角容易计算错误
知识点
20.设数列共有
项,记该数列前
项
中的最大项为
,该数列后
项
中的最小项为
,
.
(1)若数列的通项公式为
,求数列
的通项公式;
(2)若数列满足
,
,求数列
的通项公式;
(3)试构造一个数列,满足
,其中
是公差不为零的等差数列,
是等比数列,使得对于任意给定的正整数
,数列
都是单调递增的,并说明理由.
正确答案
(1),
.
(2),
.
(3)
解析
试题分析:本题属于数列综合问题,题目的难度是逐渐由易到难,(1)(2)直接按照单调数列定义来求(3)构造新数列时,要把握问题的本质。
(1)因为单调递增,所以
,
,
所以,
.
(2)根据题意可知,,
,因为
,所以
可得即
,又因为
,所以
单调递增,
则,
,所以
,即
,
,
所以是公差为2的等差数列,
,
.
(3)构造,其中
,
.
下证数列满足题意.
证明:因为,所以数列
单调递增,
所以,
,
所以,
,
因为,
所以数列单调递增,满足题意.
考查方向
解题思路
解决等差数列与等比数列的综合问题,关键是理清两个数列的关系。解综合问题的成败在于审清题意,通过给定信息的表象,抓住问题的本质,揭示问题的内在联系与隐含条件。
易错点
1、数列单调性的巧妙运用。
2、第三问中构造不正确得不到正确结论。
知识点
4.在函数的图象上有点列
,若数列
是等差数列,数列
是等比数列,则函数
的解析式可以为( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
21.数列的前n项和为Sn,且
(1)求证:数列为等比数列;
(2)求数列的通项公式;
(3)等差数列的各项为正数,其前n项和为
成等比数列,求等差数列
的公差。
正确答案
(1)
又
所以
数列,3为公比的等比数列
(2)
(3)
等差数列的各项为正数,
设公差为
则
又成等比数列,
(舍去)
解析
解析已在路上飞奔,马上就到!
知识点
6.在正项等比数列中,若
成等差数列,则
()
正确答案
解析
由题可知:a3=3a1+2a2,即a1q2=3a1+2a1q,解得q=-1(舍去)或q=2.a2016=a2014q2,
a2017=a2014q3,a2015=a2014q,约分即可。
A选项不正确,B选项不正确,C选项不正确,所以选D选项。
考查方向
解题思路
1、求出q;
2、代入计算,即可得到结果。A选项不正确,B选项不正确,C选项不正确,所以选D选项。
易错点
本题易在求q时发生错误。
知识点
设等比数列的前
项和为
,已知
,且
成等差数列.
18.求数列的通项公式;
19.设,求数列
的前
项和
.
正确答案
数列的通项公式
,数列
的前
项和
解析
解:成等差数列.
即
则
考查方向
解题思路
利用数列的性质,建立方程,求出通项公式,在求和时进行分类。
易错点
求和时绝对值的分类讨论。
正确答案
数列的通项公式
,数列
的前
项和
解析
解:当
时,
,当
时,
当时,
两式相减,得
考查方向
解题思路
利用数列的性质,建立方程,求出通项公式,在求和时进行分类。
易错点
求和时绝对值的分类讨论。
5. 已知数列是等比数列,
是1和3的等差中项,则
=
正确答案
解析
通过观察,可以看到,b2,b16和b9之间的关系,可以得到=b92, ,又根据等差中项的性质,可以得到b9=(1+3)÷2=2,所以
=22=4
考查方向
解题思路
利用等差中项求b9,进而求解答案
易错点
发现不到b2b16和b9之间的关系。
知识点
17.在公比为的等比数列
中,
与
的等差中项是
.
(Ⅰ)求的值;
(Ⅱ)若函数,
的一部分图像如图所示,
,
为图像上的两点,设
,其中
与坐标原点
重合,
,求
的值.
正确答案
见解析
解析
试题分析:本题属于数列和三角函数中的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求(2)要注意图像的应用.
(Ⅰ) 解:由题可知,又
,
故 ∴
(Ⅱ)∵点在函数
的图像上,
∴,又∵
,∴
如图,连接,在
中,由余弦定理得
又∵
∴
∴
∴
考查方向
本题考查了数列与三角函数的知识,涉及到等比数列及三角函数的应用,是高考题中的高频考点.
解题思路
本题考查数列与三角函数的知识,解题步骤如下:利用通项公式求解,利用函数图像性质代入求解。
易错点
三角函数图像易错。
知识点
6.已知等差数列的公差为
,若
成等比数列,那么
等于 ___________;
正确答案
2
解析
设,
+2,
+6 由
成等比数列,得:(
+2)2=
(
+6),
=2
考查方向
解题思路
本题考查运用等差数列及等比数列性质求首项,解题步骤如下:设,
+2,
+6 由
成等比数列,得:(
+2)2=
(
+6),
=2
易错点
本题必须注意审题,忽视则会出现错误。
知识点
正确答案
知识点
扫码查看完整答案与解析