- 斜率的计算公式
- 共221题
已知函数f(x)=x3+x2,数列|xn|(xn>0)的第一项x1=1,以后各项按如下方式取定:曲线x=f(x)在(xn+1,f(xn+1))处的切线与经过(0,0)和(xn,f (xn))两点的直线平行(如图)。求证:当n∈N*时,
(1)xn2+xn=3xn+12+2xn+1;
(2)
正确答案
解:(1)因为f′(x)=3x2+2x
所以曲线y=f (x)在(xn+1,f (xn-1))处的切线斜率kn+1=3xn+12+2xn+1
因为过(0,0)和(xn,f (xn))两点的直线斜率是xn2+xn
所以xn2+xn= 3xn+12+2xn+1。
(2)因为函数h(x)=x2+x 当x>0时单调递增,
而xn2+xn=3xa+12+2xn+1 ≤4xn+12+2xn+1
所以,即
因此
又因为
令yn=xn2+xn则
因为y1=x21+x1=2
所以
因此
故。
已知函数在点(x1,f(x1))处的切线在x轴上的截距为x2,则当
时,
的取值范围是_________.
正确答案
以下四个关于圆锥曲线的命题中:
①设A、B为两个定点,k为非零常数,若,则动点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若,则动点P的轨迹为椭圆;
③抛物线的焦点坐标是
;
④曲线与曲线
(
且
)有相同的焦点.
其中真命题的序号为____________写出所有真命题的序号.
正确答案
③④
略
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知椭圆:
(
),其左、右焦点分别为
、
,且
、
、
成等比数列.
(1)求的值.
(2)若椭圆的上顶点、右顶点分别为
、
,求证:
.
(3)若为椭圆
上的任意一点,是否存在过点
、
的直线
,使
与
轴的交点
满足
?若存在,求直线
的斜率
;若不存在,请说明理由.
正确答案
略
(1)由题设及
,得
.(4分)
(2)由题设
,
,又
,得
,
,(8分)
于是,故
.(10
分)
(3)由题设,显然直线垂直于
轴时不合题意,设直线
的方程为
,
得,又
,及
,得点
的坐标为
,(12分)
因为点在椭圆上,所以
,又
,得
,
,与
矛盾,故不存在满足题意的直线
.(16分)
已知O为坐标原点,曲线C上的任意一点P到点F(0,1)的距离与到直线l:y=-1的距离相等,过点F的直线交曲线C于A、B两点,且曲线C在A、B两点处的切线分别为l1、l2.
(1)求曲线C的方程;
(2)求证:直线l1、l2互相垂直;
(3)y轴上是否存在一点R,使得直线RF始终平分∠ARB?若存在,求出R点坐标;若不存在,说明理由.
正确答案
(1)∵P到点F(0,1)的距离与到直线l:y=-1的距离相等,
∴曲线C是以F(0,1)为焦点,直线y=-1为准线的抛物线,其方程为x2=4y
(2)焦点F(0,1),设直线AB:y=kx+1,A(x1,y1),B(x2,y2)
直线方程与抛物线方程联立得x2-4kx-4=0,
∴x1x2=-4,又y'=x,
∴直线l1的斜率为k1=x1,直线l2的斜率为k2=
x2,
∴k1k2=•x1x2=-1,即直线l1和l2互相垂直.
(3)假设y轴上存在一点R(0,y0),使得直线RF始终平分∠ARB,则有kAR+kBR=0
∴+
=0
∴x2(y0-y1)+x1(y0-y2)=0∴y0(x2+x1)-(x2y1+x1y2)=0
∴y0(x2+x1)-x1x2( x2+x1)=0
∴y0+1=0∴y0=-1,即存在R(0,-1)满足条件.
扫码查看完整答案与解析