- 用向量证明线线、线面、面面的垂直、平行关系
- 共1400题
已知:lα ,m
α ,l∥m
求证:l∥ α
正确答案
证明见解析
证明:∵l ∥ m∴l和m确定一平面,设平面为β ,则α∩β =m
如果l和平面α不平行,则l和α有公共点,设l ∩ α=P,
则点P ∈ m,于是l和m相交,这与l ∥ m矛盾,所以l∥ α
如图,在空间六边形(六个顶点没有任何五点共面)ABCC1D1A1中,每相邻的两边互相垂直,边长均等于a,并且AA1∥CC1.求证:平面A1BC1∥平面ACD1.
正确答案
证明见解析
证明:在面ABC内分别经A、C作AB及BC的平行线相交于D,在面A1D1C1内作D1C1及D1A1的平行线相交于B1,顺次相连BB1、DD1.那么由相邻两边垂直及边长均为a可知构造几何体为正方体.
∵AC∥A1C1,BC1∥AD1,∴面A1BC1∥面ACD1.
正方体ABCD-A1B1C1D1中,M,N分别是AB,A1D1的中点.
求证:MN∥平面BB1D1D.
正确答案
证明:设则
因为MN
平面BB1D1D,
所以MN∥平面BB1D1D
略
直三棱柱中,
,
,
、
分别为
、
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)求四面体的体积.
正确答案
(Ⅰ)先证AB⊥平面BB1C1C.又N、F分别为A1 C1、B1 C1的中点,证出NF⊥平面BB1C1C. NF⊥FC .
证得FC⊥平面NFB.
(Ⅱ).
试题分析:(Ⅰ)直三棱柱ABC-A1B1C1中,
B1B⊥AB, BC⊥AB,又B1BBC=B,
∴AB⊥平面BB1C1C.
又N、F分别为A1 C1、B1 C1的中点
∴AB∥A1B1∥NF.
∴NF⊥平面BB1C1C.
因为FC平面BB1C1C.所以NF⊥FC .
取BC中点G,有BG=GF=GC.∴BF⊥FC ,又 NFFB=F,
∴FC⊥平面NFB. 7分
(Ⅱ)由(Ⅰ)知, ,
,
. 14分
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,若利用向量则可简化证明过程。(2)体积计算中,运用了“等积法”。
已知如图,P平面ABC,PA=PB=PC,∠APB=∠APC=60°,∠BPC=90°求证:平面ABC⊥平面PBC
正确答案
要证明面面垂直,只要在其呈平面内找一条线,然后证明直线与另一平面垂直即可。显然BC中点D,证明AD垂直平PBC即可
证明:取BC中点D 连结AD、PD
∵PA=PB;∠APB=60°
∴ΔPAB为正三角形
同理ΔPAC为正三角形
设PA=a
在RTΔBPC中,PB=PC=a
BC=a
∴PD=a
在ΔABC中
AD=
=a
∵AD2+PD2=
=a2=AP2
∴ΔAPD为直角三角形
即AD⊥DP
又∵AD⊥BC
∴AD⊥平面PBC
∴平面ABC⊥平面PBC
扫码查看完整答案与解析