热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题

野茉莉的花色有白色、浅红色、粉红色、红色和深红色.

(1)研究发现野茉莉花色受一组复等位基因控制(b1-白色、b2-浅红色、b3-粉红色、b4-红色、b5-深红色),复等位基因彼此间具有循环且依次完全显隐关系(即:如果b对b1为显性,b2对b3为显性,则b1对b3为显性).为进一步探究b1、b2…b5之间的显隐性关系,科学家用5个纯种品系进行了以下杂交试验:

则b1、b2、b3、b4、b5之间的显隐关系是______(若b1对b2为显性,可表示为b1>b2,依此类推).自然界野茉莉花色基因型有几种______

(2)理论上分析,野茉莉花色的遗传还有另一种可能:花色受两对基因(A/a,B/b)控制,这两对基因分别位于两对同源染色体上,每个显性基因对颜色的增加效应相同且具叠加性.请据此分析一株粉红色野茉莉自交后代的表现型及比例:______

(3)若要区分上述两种可能,可用一株什么品系的野茉莉进行自交?______,并预期可能的结果,若子代______,则为第一种情况,若子代______,则为第二种情况.

(4)野茉莉叶片颜色有深绿(DD)、浅绿(Dd)、白色(dd),白色植株幼苗期会死亡.现有深绿和浅绿野茉莉进行杂交得到F1,让F1植株相互授粉得到F2,请计算F2成熟个体中叶片颜色的表现型及比值______

正确答案

解:(1)由以上分析可知,b1、b2、b3、b4、b5之间的显隐关系是b5>b4>b3>b2>b1.5个复等位基因,则纯合子的基因型有5种,杂合子的基因型有5×4÷2=10种,共15种.

(2)花色受两对基因(A/a,B/b)控制,这两对基因分别位于两对同源染色体上,每个显性基因对颜色的增加效应相同且具叠加性.根据显性基因的数目可知表现型有5种(4个显性基因、3个显性基因、2个显性基因、1个显性基因、0个显性基因).AaBb自交,后代的表现型及比例深红色(1AABB):红色(2AaBB+2AABb):粉红色(4AaBb+1AAbb+1aaBB):浅红色(2Aabb+2aaBb):白色(1aabb)=1:4:6:4:1.

(3)若要区分上述两种可能,可用一株浅红色或红色野茉莉进行自交.若子代全为浅红色或红色,则为第一种情况,若子代出现深红色或出现白色则是第二种情况.

(4)深绿和浅绿野茉莉进行杂交得到F1DD、Dd),则D=,d=,让F1植株相互授粉得到F2,根据遗传平衡定律,F2中DD=×=(深绿),Dd=2××=(浅绿),dd=×=(白色,死亡),因此F2成熟个体中叶片颜色的表现型及比值9:6.

故答案为:

(1)b5>b4>b3>b2>b1   15种

(2)白色:浅红色:粉红色:红色:深红色=1:4:6:4:1

(3)浅红色或红色   若子代全为浅红色或(红色)则为第一种情况,若子代出现深红色或出现白色则是第二种情况

(4)9:6(3:2)

解析

解:(1)由以上分析可知,b1、b2、b3、b4、b5之间的显隐关系是b5>b4>b3>b2>b1.5个复等位基因,则纯合子的基因型有5种,杂合子的基因型有5×4÷2=10种,共15种.

(2)花色受两对基因(A/a,B/b)控制,这两对基因分别位于两对同源染色体上,每个显性基因对颜色的增加效应相同且具叠加性.根据显性基因的数目可知表现型有5种(4个显性基因、3个显性基因、2个显性基因、1个显性基因、0个显性基因).AaBb自交,后代的表现型及比例深红色(1AABB):红色(2AaBB+2AABb):粉红色(4AaBb+1AAbb+1aaBB):浅红色(2Aabb+2aaBb):白色(1aabb)=1:4:6:4:1.

(3)若要区分上述两种可能,可用一株浅红色或红色野茉莉进行自交.若子代全为浅红色或红色,则为第一种情况,若子代出现深红色或出现白色则是第二种情况.

(4)深绿和浅绿野茉莉进行杂交得到F1DD、Dd),则D=,d=,让F1植株相互授粉得到F2,根据遗传平衡定律,F2中DD=×=(深绿),Dd=2××=(浅绿),dd=×=(白色,死亡),因此F2成熟个体中叶片颜色的表现型及比值9:6.

故答案为:

(1)b5>b4>b3>b2>b1   15种

(2)白色:浅红色:粉红色:红色:深红色=1:4:6:4:1

(3)浅红色或红色   若子代全为浅红色或(红色)则为第一种情况,若子代出现深红色或出现白色则是第二种情况

(4)9:6(3:2)

1
题型:简答题
|
简答题

南瓜皮色分为白色、黄色和绿色,皮色性状的遗传涉及两对等位基因,分别用H、h和Y、y表示.现用白甲、白乙、黄色和绿色4个纯合品种进行杂交实验,结果如下:

实验1:黄×绿,F1表现为黄,F1自交,F2表现为3黄:1绿;

实验2:白甲×黄,F1表现为白,F1自交,F2表现为12白:3黄:1绿;

实验3:白乙×绿,F1表现为白,F1×绿(回交),F2表现为2白:1黄:1绿;

分析上述实验结果,请回答:

(1)南瓜皮色遗传______(遵循/不遵循)基因自由组合定律.

(2)南瓜皮的色素、酶和基因的关系如图1所示:

若H基因使酶1失去活性,则控制酶2合成的基因是______,白甲、白乙的基因型分别为____________

(3)若将实验3得到的F2白皮植株自交,F3的皮色的表现型及比例是______

(4)研究发现,与正常酶1比较,失去活性的酶1氨基酸序列有两个突变位点,如图2:据图推测,h基因突变为H基因时,导致①处突变的原因是发生了碱基对的______,导致②处突变的原因是发生了碱基对的______.进一步研究发现,失活的酶1相对分子质量明显小于正常酶1,出现此现象的原因可能是蛋白质合成______

正确答案

解:(1)由实验2的F1自交,F2表现为12白:3黄:1绿,可判断南瓜皮色遗传遵循基因自由组合定律.

(2)H基因使酶1失去活性,h基因无此效应,因此实验2中F2代黄色南瓜基因型为hhY_,由图可知,Y为控制酶2合成的基因.可知,F1中白色基因型为HhYy,亲代白色(甲)为HHyy,黄色为hhYY.由南瓜皮色的色素、酶和基因的关系图可知:白色的基因型为:H---,即HHYY、HHYy、HHyy、HhYY、HhYy、Hhyy,共6种,其中纯合子的基因型是HHYY和HHyy.因此白色(乙)为HHYY.

(3)实验3得到的F2白色植株的基因型为HhYy和Hhyy,比例为1:1.因此HhYy植株自交,F3中花色的表现型及比例是12白:3黄:1绿;Hhyy植株自交,F3中花色的表现型及比例是3白:1绿=12白:4绿.因此,实验3得到的F2白色植株自交,F3中花色的表现型及比例是白色:黄:绿=24:3:5.

(4)据图分析,a处基因突变只导致一个氨基酸改变,这种突变可能是碱基对的替换,而b处突变导致b处及其后肽链上所有氨基酸都发生变化,可能是碱基对的增添或缺失.失活酶1的相对分子质量明显小于正常酶1,说明其肽链比正常的要短,可能为翻译提前终止.

故答案为:

(1)遵循

(2)Y          HHyy         HHYY

(3)白:黄:绿=24:3:5

(4)替换     增添或缺失    提前终止

解析

解:(1)由实验2的F1自交,F2表现为12白:3黄:1绿,可判断南瓜皮色遗传遵循基因自由组合定律.

(2)H基因使酶1失去活性,h基因无此效应,因此实验2中F2代黄色南瓜基因型为hhY_,由图可知,Y为控制酶2合成的基因.可知,F1中白色基因型为HhYy,亲代白色(甲)为HHyy,黄色为hhYY.由南瓜皮色的色素、酶和基因的关系图可知:白色的基因型为:H---,即HHYY、HHYy、HHyy、HhYY、HhYy、Hhyy,共6种,其中纯合子的基因型是HHYY和HHyy.因此白色(乙)为HHYY.

(3)实验3得到的F2白色植株的基因型为HhYy和Hhyy,比例为1:1.因此HhYy植株自交,F3中花色的表现型及比例是12白:3黄:1绿;Hhyy植株自交,F3中花色的表现型及比例是3白:1绿=12白:4绿.因此,实验3得到的F2白色植株自交,F3中花色的表现型及比例是白色:黄:绿=24:3:5.

(4)据图分析,a处基因突变只导致一个氨基酸改变,这种突变可能是碱基对的替换,而b处突变导致b处及其后肽链上所有氨基酸都发生变化,可能是碱基对的增添或缺失.失活酶1的相对分子质量明显小于正常酶1,说明其肽链比正常的要短,可能为翻译提前终止.

故答案为:

(1)遵循

(2)Y          HHyy         HHYY

(3)白:黄:绿=24:3:5

(4)替换     增添或缺失    提前终止

1
题型:简答题
|
简答题

豌豆种子的子叶黄色和绿色分别由基因Y和y控制.形状圆粒和皱粒分别由基因R和r控制.科技小组在进行遗传实验过程中,用黄色圆粒和绿色圆粒进行杂交,发现后代出现四种表现型(如图所示)

(1)亲本黄色圆粒的基因型为______,绿色圆粒的基因型为______

(2)杂交后代,黄色与绿色的比是______;圆粒与皱粒的比是______

(3)后代中属于双隐性性状的表现型是______

(4)杂交后代中黄色皱粒所占的比例是______,表现型为非亲本类型所占的比例是______

正确答案

解:(1)根据分析可知,双亲的基因型为YyRr×yyRr.

(2)根据黄色圆粒和绿色皱粒豌豆进行杂交实验的结果可知子代中圆粒:皱粒=3:1;黄色:绿色=1:1.

(3)把两个亲本的基因一对一对的考虑:黄色圆粒YyRr和绿色皱粒yyRr杂交,Yy×yy后代纯合体只有yy,Rr×Rr后代纯合体有RR、rr,故两亲本杂交后代中纯合体基因型为:yyRR、yyrr,其中yyrr为双隐性个体,表现型为绿色皱粒.

(4)已知双亲的基因型为YyRr×yyRr,杂交后代中黄色皱粒所占的比例为=.表现型为非亲本类型所占的比例=1-=

故答案为:

 (1)YyRr      yyRr       

(2)1:1       3:1

(3)绿色皱粒      

 (4)        

解析

解:(1)根据分析可知,双亲的基因型为YyRr×yyRr.

(2)根据黄色圆粒和绿色皱粒豌豆进行杂交实验的结果可知子代中圆粒:皱粒=3:1;黄色:绿色=1:1.

(3)把两个亲本的基因一对一对的考虑:黄色圆粒YyRr和绿色皱粒yyRr杂交,Yy×yy后代纯合体只有yy,Rr×Rr后代纯合体有RR、rr,故两亲本杂交后代中纯合体基因型为:yyRR、yyrr,其中yyrr为双隐性个体,表现型为绿色皱粒.

(4)已知双亲的基因型为YyRr×yyRr,杂交后代中黄色皱粒所占的比例为=.表现型为非亲本类型所占的比例=1-=

故答案为:

 (1)YyRr      yyRr       

(2)1:1       3:1

(3)绿色皱粒      

 (4)        

1
题型:简答题
|
简答题

小麦品种是纯合体,生产上用种子繁殖.控制小麦高秆的基因A和控制小麦矮秆的基因a是一对等位基因,控制小麦抗病的基因B和控制小麦感病的基因b是一对等位基因,两对基因位于两对同源染色体上.

(1)若要通过杂交育种的方法选育矮秆(aa)抗病(BB)的小麦新品种,所选择亲本的基因型是______;确定表现型为矮秆抗病小麦是否为理想类型的最适合的方法是______

(2)某同学设计了培育小麦矮秆抗病新品种的另一种育种方法,过程如下所示:

选择合适的亲本F1F1花药甲植株乙植株基因型为aaBB的小麦种子

其中的过程③表示______,④应在甲植株生长发育的______时期进行处理,乙植株中矮秆抗病个体占______

(3)自然情况下,A基因转变为a基因的变异属于______

正确答案

解:(1)欲获得矮秆抗病(aaBB)的小麦,选择基因型为AABB和aabb的亲本,首先让该亲本进行杂交,获得基因型为AaBb的个体,再让AaBb进行自交,选育出aaB_个体,并让该个体连续自交,直到后代不发生性状分离为止.

(2)由以上分析可知,过程③表示花药离体培养;由第(1)题可知,所选亲本的基因型为AABB和aabb,则获得的F1为AaBb,其产生的配子的基因型有四种,即AB:Ab:aB:ab=1:1:1:1,因此通过花药离体培养获得四种比例相等的单倍体幼苗,再经过④秋水仙素染色体加倍后矮杆抗病(aaBB)个体占

(3)A基因和a基因为一对等位基因,是基因突变产生的.

故答案为:

(1)AABB和aabb      自交

(2)花药离体培养    幼苗   

(3)基因突变

解析

解:(1)欲获得矮秆抗病(aaBB)的小麦,选择基因型为AABB和aabb的亲本,首先让该亲本进行杂交,获得基因型为AaBb的个体,再让AaBb进行自交,选育出aaB_个体,并让该个体连续自交,直到后代不发生性状分离为止.

(2)由以上分析可知,过程③表示花药离体培养;由第(1)题可知,所选亲本的基因型为AABB和aabb,则获得的F1为AaBb,其产生的配子的基因型有四种,即AB:Ab:aB:ab=1:1:1:1,因此通过花药离体培养获得四种比例相等的单倍体幼苗,再经过④秋水仙素染色体加倍后矮杆抗病(aaBB)个体占

(3)A基因和a基因为一对等位基因,是基因突变产生的.

故答案为:

(1)AABB和aabb      自交

(2)花药离体培养    幼苗   

(3)基因突变

1
题型:简答题
|
简答题

球茎紫堇的有性生殖为兼性自花授粉,即开花期遇到持续降雨,只进行自花、闭花授粉;天气晴朗,可借助蜜蜂等昆虫进行传粉.紫堇的花色(紫色AA、黄色Aa、白色aa)与花梗长度(长梗对短梗为显性,基因用“B、b”表示)两对性状独立遗传.现将相等数量的紫花短梗(AAbb)和黄花长梗(AaBB)两个品种的球茎紫堇间行种植,请回答:

(1)若开花期连续阴雨,黄花长梗(AaBB)植物上收获种子纯合子的基因型为______,所控制对应性状的表现型为______.若开花期内短暂阴雨后,天气晴朗,则紫花短梗植株上所收获种子的基因型有______种.

(2)研究发现,基因型aaBB个体因缺乏某种酶而表现白花性状,则说明基因A控制性状的方式是______.如果基因a与A的转录产物之间只有一个密码子的碱基序列不同,则翻译至mRNA的该点时发生的变化可能是:编码的氨基酸______,或者是翻译终止(或肽链合成终止).

(3)紫堇花瓣的单瓣与重瓣是由一对等位基因(E、e)控制的相对性状.自然界中紫堇大多为单瓣花,偶见重瓣花.人们发现所有的重瓣紫堇都不育(雌、雄蕊发育不完善),某些单瓣植株自交后代F1总是产生大约50%的重瓣花.

①根据实验结果可知,紫蔓的重瓣花为______性状.

②研究发现,造成上述实验现象的根本原因是等位基因(E、e)所在染色体发生部分缺失,染色体缺失的花粉致死.如图为单瓣紫堇花粉母细胞中等位基因(E、e)所在染色体联会示意图,请在染色体上标出相应基因.

______

③为探究“染色体缺失的花粉致死”这一结论的真实性,某研究小组设计了以下实验方案:

F1单瓣紫堇→花药单体幼苗F2紫堇

图示方案获得F2的育种方式称为______.该过程需要经过Ⅰ____________诱导后得到F2,最后观察并统计F2的花瓣性状表现.

预期结果和结论:若F2花瓣只有重瓣花,则上述结论是真实的.

正确答案

解:(1)开花期连续阴雨,黄花长梗(AaBB)植物只进行自花、闭花授粉即自交,则后代基因型为AABB、AaBB、aaBB共三种,其性状分别为紫花长梗、黄花长梗、白花长梗.由“开花期遇到持续降雨,只进行自花、闭花授粉,天气晴朗,可借助蜜蜂等昆虫进行传粉”可知“开花期内短暂阴雨后,天气晴朗”时紫花短梗植株(AAbb)既存在自交又存在与黄花长梗(AaBB)杂交,自交后代基因型为AAbb,杂交后代基因型为AaBb、AABb,则紫花短梗植株上所收获种子的基因型为AAbb、AaBb、AABb.

(2)基因对性状的控制有两条途径:①是基因通过控制酶的合成来控制代谢过程,进而控制生物体的性状;②是基因通过控制蛋白质的结构直接控制生物体的性状.由“基因型aaBB个体因缺乏某种酶而表现白花性状”可知基因A控制性状的方式是通过控制酶的合成来控制代谢过程,进而控制生物性状.由“基因a与A的转录产物之间只有一个密码子的碱基序列不同”可知翻译至mRNA的该点时发生的变化可能是编码的氨基酸种类改变或者翻译终止.

(3)①根据“单瓣植株自交后代总是产生大约50%的重瓣花”知单瓣花为显性性状,重瓣花为隐性性状.

②造成上述实验现象的根本原因是等位基因(E、e)所在染色体发生部分缺失,而染色体缺失的花粉致死所致,则相应基因在染色体上的位置如图:

③该图示的育种方法为单倍体育种,该过程需要经过花药离体培养和秋水仙素处理.若上述结论是真实的,则F2花瓣只有重瓣花;若上述结论是不存在的,则F2花瓣有单花瓣和重花瓣.

故答案为:

(1)3 紫花长梗、黄花长梗、白花长梗 3

(2)通过控制酶的合成控制代谢过程 种类改变

(3)①隐性

②如图

③单倍体育种 花药离体培养 秋水仙素诱导

解析

解:(1)开花期连续阴雨,黄花长梗(AaBB)植物只进行自花、闭花授粉即自交,则后代基因型为AABB、AaBB、aaBB共三种,其性状分别为紫花长梗、黄花长梗、白花长梗.由“开花期遇到持续降雨,只进行自花、闭花授粉,天气晴朗,可借助蜜蜂等昆虫进行传粉”可知“开花期内短暂阴雨后,天气晴朗”时紫花短梗植株(AAbb)既存在自交又存在与黄花长梗(AaBB)杂交,自交后代基因型为AAbb,杂交后代基因型为AaBb、AABb,则紫花短梗植株上所收获种子的基因型为AAbb、AaBb、AABb.

(2)基因对性状的控制有两条途径:①是基因通过控制酶的合成来控制代谢过程,进而控制生物体的性状;②是基因通过控制蛋白质的结构直接控制生物体的性状.由“基因型aaBB个体因缺乏某种酶而表现白花性状”可知基因A控制性状的方式是通过控制酶的合成来控制代谢过程,进而控制生物性状.由“基因a与A的转录产物之间只有一个密码子的碱基序列不同”可知翻译至mRNA的该点时发生的变化可能是编码的氨基酸种类改变或者翻译终止.

(3)①根据“单瓣植株自交后代总是产生大约50%的重瓣花”知单瓣花为显性性状,重瓣花为隐性性状.

②造成上述实验现象的根本原因是等位基因(E、e)所在染色体发生部分缺失,而染色体缺失的花粉致死所致,则相应基因在染色体上的位置如图:

③该图示的育种方法为单倍体育种,该过程需要经过花药离体培养和秋水仙素处理.若上述结论是真实的,则F2花瓣只有重瓣花;若上述结论是不存在的,则F2花瓣有单花瓣和重花瓣.

故答案为:

(1)3 紫花长梗、黄花长梗、白花长梗 3

(2)通过控制酶的合成控制代谢过程 种类改变

(3)①隐性

②如图

③单倍体育种 花药离体培养 秋水仙素诱导

百度题库 > 高考 > 生物 > 自由组合定律的应用

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题