- 自由组合定律的应用
- 共5666题
豌豆子叶的黄色(Y)对绿色(y)为显性,圆粒种子(R)对皱粒种子(r)为显性.某人用黄色圆粒和绿色圆粒的豌豆进行杂交,发现后代出现4种类型,对性状的统计结果如图所示,请据图回答问题.
(1)亲本的基因组成是______(黄色圆粒)______(绿色圆粒).
(2)在F1中,不同于亲本的表现型为______.F1中纯合子占的比例是______.
(3)F1中黄色圆粒豌豆的基因组成是______.如果用F1的一株黄色圆粒双杂合豌豆与绿色皱粒豌豆杂交,得到的F2的表现型及比例为______.
正确答案
解:(1)根据杂交后代的比例和上述分析,可以判断亲本的基因型为YyRr(黄色圆粒)和yyRr(绿色圆粒).
(2)在杂交后代F1中,基因型有6种,表现型有4种,分别是黄色圆粒(1YyRR、2YyRr)、黄色皱粒(1Yyrr)、绿色圆粒(1yyRR、2yyRr)和绿色皱粒(1yyrr);数量比为3:1:3:1.非亲本类型是黄色皱粒和绿色皱粒,它们之间的数量比为1:1.F1中纯合子占比例是=
.
(3)亲本的基因型为YyRr和yyRr,F1中黄色圆粒豌豆的基因组成是YyRR或YyRr.如果用F1中的一株黄色圆粒YyRR豌豆与绿色皱粒豌豆杂交,得到的F2的性状类型有2种,数量比为黄色圆粒:绿色圆粒=1:1;如果用F1中的一株黄色圆粒YyRr豌豆与绿色皱粒豌豆杂交,得到的F2的性状类型有4种,数量比为黄色圆粒:绿色圆粒:黄色皱粒:绿色皱粒=1:1:1:1.
故答案为:
(1)YyRr yyRr
(2)黄色皱粒,绿色皱粒
(3)YyRR或YyRr 黄色圆粒:绿色圆粒:黄色皱粒:绿色皱粒=1:1:1:1
解析
解:(1)根据杂交后代的比例和上述分析,可以判断亲本的基因型为YyRr(黄色圆粒)和yyRr(绿色圆粒).
(2)在杂交后代F1中,基因型有6种,表现型有4种,分别是黄色圆粒(1YyRR、2YyRr)、黄色皱粒(1Yyrr)、绿色圆粒(1yyRR、2yyRr)和绿色皱粒(1yyrr);数量比为3:1:3:1.非亲本类型是黄色皱粒和绿色皱粒,它们之间的数量比为1:1.F1中纯合子占比例是=
.
(3)亲本的基因型为YyRr和yyRr,F1中黄色圆粒豌豆的基因组成是YyRR或YyRr.如果用F1中的一株黄色圆粒YyRR豌豆与绿色皱粒豌豆杂交,得到的F2的性状类型有2种,数量比为黄色圆粒:绿色圆粒=1:1;如果用F1中的一株黄色圆粒YyRr豌豆与绿色皱粒豌豆杂交,得到的F2的性状类型有4种,数量比为黄色圆粒:绿色圆粒:黄色皱粒:绿色皱粒=1:1:1:1.
故答案为:
(1)YyRr yyRr
(2)黄色皱粒,绿色皱粒
(3)YyRR或YyRr 黄色圆粒:绿色圆粒:黄色皱粒:绿色皱粒=1:1:1:1
喷瓜叶颜色由一对等位基因(B、b)控制(BB表现深绿;Bb表现浅绿.bb呈黄色,幼苗阶段死亡).抗病与否受另一对等位基因(R、r)控制.就这两对性状遗传做杂交实验,结果如下:
实验1:深绿不抗病×浅绿抗病→深绿抗病:浅绿抗病═1:1
实验2:深绿不抗病×浅绿抗病→深绿抗病:深绿不抗病:浅绿抗病:浅绿不抗病=1:1:1:1
综合上述实验结果,请回答:
(1)抗病与否这一相对性状中,显性性状是______.上述两对相对性状的遗传遵循______定律.
(2)实验1中两个亲本的基因型分别是______.
(3)实验2的遗传图解为:
______
(4)用叶深绿与叶浅绿植株杂交得F1,F1随机交配得到F2成熟群体中,B基因的基因频率为______.
正确答案
解:(1)实验1中,不抗病×抗病→后代均抗病,说明抗病相对于不抗病为显性性状;实验2中,深绿不抗病×浅绿抗病→深绿抗病:深绿不抗病:浅绿抗病:浅绿不抗病=1:1:1:1,说明这两对相对性状的遗传遵循基因自由组合定律.
(2)由以上分析可知,实验1中亲本的基因型为BBrr×BbRR.
(3)由以上分析可知,实验2中亲本的基因型为BBrr×BbRr,因此遗传图解如下:
(4)用叶深绿(BB)与叶浅绿(Bb)植株杂交得F1,F1的基因型及比例为BB:Bb=1:1,其中B的基因频率为,b的基因频率为
,根据遗传平衡定律,F2中BB的基因型频率为
,Bb的基因型频率为
,bb的基因型频率为
,其中bb幼苗阶段死亡,因此F2成熟群体中,BB占
,Bb占
,B基因的基因频率为
,即80%.
故答案为:
(1)抗病 自由组合
(2)BBrr×BbRR
(3)
(4)80%
解析
解:(1)实验1中,不抗病×抗病→后代均抗病,说明抗病相对于不抗病为显性性状;实验2中,深绿不抗病×浅绿抗病→深绿抗病:深绿不抗病:浅绿抗病:浅绿不抗病=1:1:1:1,说明这两对相对性状的遗传遵循基因自由组合定律.
(2)由以上分析可知,实验1中亲本的基因型为BBrr×BbRR.
(3)由以上分析可知,实验2中亲本的基因型为BBrr×BbRr,因此遗传图解如下:
(4)用叶深绿(BB)与叶浅绿(Bb)植株杂交得F1,F1的基因型及比例为BB:Bb=1:1,其中B的基因频率为,b的基因频率为
,根据遗传平衡定律,F2中BB的基因型频率为
,Bb的基因型频率为
,bb的基因型频率为
,其中bb幼苗阶段死亡,因此F2成熟群体中,BB占
,Bb占
,B基因的基因频率为
,即80%.
故答案为:
(1)抗病 自由组合
(2)BBrr×BbRR
(3)
(4)80%
已知某哺乳动物棒状尾(A)对正常尾(a)为显性,黄色毛(Y)对白色毛(y)为显性.但是雌性个体无论基因型如何,均表现为白色毛.三对基因均位于常染色体上并遵循基因的自由组合定律.请回答:
(1)如果想依据子代的表现型判断出性别,下列各杂交组合中,能满足要求的是______.
①aayy×AAYY ②AAYy×aayy ③AaYY×aaYy ④AAYy×aaYy
(2)如果一只黄色个体与一只白色个体交配,生出一只白色雄性个体,则父本、母本、子代个体的基因型分别是______、______、______.
(3)如果一只表现型为黄色棒状尾和一只白色棒状尾的亲本杂交,Fl表现型雄性黄色棒状、
黄色正常、
白色棒状、
白色正常;雌性
白色棒状、
白色正常,则两个亲本的基因型组合为♂______、♀______.
正确答案
解:(1)①aayy×AAYY杂交,子代AaYy,雄性表现为棒状尾黄色毛,雌性表现为棒状尾白毛,可以判断;②AAYy×aayy杂交,子代AaYy和Aayy,雄性为棒状尾黄色毛和棒状尾白毛,雌性棒状尾白毛,不可以判断;③AaYY×aaYy杂交,后代AaY_和aaY_,雄性棒状尾黄色毛和正常尾黄色毛,雌性棒状尾白色毛和正常尾白色毛,可以判断;④AAYy×aaYy杂交,子代是AaY_和Aayy,雄性表现棒状尾黄色毛和棒状尾白色毛,雌性表现为棒状尾白色毛,不可以判断.故选:①③.
(2)根据“生出一个白色雄性个体”可推出该个体基因型为yy,因此要求母本和父本都应有y基因.黄色个体一定为父本,且基因组成为Yy;母本的基因组成为Yy或yy;子代个体的基因型为yy.
(3)根据一只表现型为黄色棒状尾和一只白色棒状尾的亲本杂交,F1表现型雄性黄色棒状、
黄色正常、
白色棒状、
白色正常,可知:黄色:白色=1:1,棒状:正常=3:1;因此可判断亲本基因型为AaYy和Aayy.由于雌性个体无论基因型如何,均表现为白色毛,所以两个亲本的基因型组合为♂AaYy和♀Aayy.
故答案为:
(1)①③
(2)Yy Yy或yy yy
(3)♂AaYy♀Aayy
解析
解:(1)①aayy×AAYY杂交,子代AaYy,雄性表现为棒状尾黄色毛,雌性表现为棒状尾白毛,可以判断;②AAYy×aayy杂交,子代AaYy和Aayy,雄性为棒状尾黄色毛和棒状尾白毛,雌性棒状尾白毛,不可以判断;③AaYY×aaYy杂交,后代AaY_和aaY_,雄性棒状尾黄色毛和正常尾黄色毛,雌性棒状尾白色毛和正常尾白色毛,可以判断;④AAYy×aaYy杂交,子代是AaY_和Aayy,雄性表现棒状尾黄色毛和棒状尾白色毛,雌性表现为棒状尾白色毛,不可以判断.故选:①③.
(2)根据“生出一个白色雄性个体”可推出该个体基因型为yy,因此要求母本和父本都应有y基因.黄色个体一定为父本,且基因组成为Yy;母本的基因组成为Yy或yy;子代个体的基因型为yy.
(3)根据一只表现型为黄色棒状尾和一只白色棒状尾的亲本杂交,F1表现型雄性黄色棒状、
黄色正常、
白色棒状、
白色正常,可知:黄色:白色=1:1,棒状:正常=3:1;因此可判断亲本基因型为AaYy和Aayy.由于雌性个体无论基因型如何,均表现为白色毛,所以两个亲本的基因型组合为♂AaYy和♀Aayy.
故答案为:
(1)①③
(2)Yy Yy或yy yy
(3)♂AaYy♀Aayy
野茉莉花瓣的颜色是红色,其花瓣所含色素由核基因控制的有关酶所决定,用两个无法产生红色色素的纯种(突变品系1和突变品系2)及其纯种野生型茉莉进行杂交实验,F1自交得F2,结果如下:
研究表明,决定产生色素的基因A对a为显性.但另一对等位基因B、b中,显性基因B存在时,会抑制色素的产生.
(1)根据以上信息,可判断上述杂交亲本中突变品系1的基因型为______
(2)为鉴别第Ⅱ组F2中无色素植株的基因型,取该植株自交,若后代全为无色素的植株,则其基因型为______;Ⅲ组F2的无色素植株中的纯合子占的几率为______
(3)若从第Ⅰ、Ⅱ组的F2中各取一株能产生色素的植株,二者基因型相同的概率是______.从第Ⅰ、Ⅲ组的F2中各取一株能产生色素的植株,二者基因型相同的概率是______.
(4)进一步研究得知,基因A是通过控制酶A的合成来催化一种前体物转化为红色色素的.而基因B-b本身并不直接表达性状,但基因B能抑制基因A的表达.请在右上方框内填上适当的文字解释上述遗传现象.
正确答案
解:(1)由“决定产生色素的基因A对a为显性.但另一对等位基因B、b中,显性基因B存在时,会抑制色素的产生,”可推知无色素的基因型为A _ B _、aa_ _,有色素的基因型为A_bb.由品系1×品系2→F1(无色素)---→有色素、
无色素,可推知F1的基因型为AaBb.野生型纯种基因型为AAbb.突变品系1 X 野生型(AAbb)→F1有色素(A_bb)→
有色素、
无色素,看推知该F1基因型为Aabb,进而可推知突变品系1的基因型为aabb.
(2)由于突变品系1和突变品系2都是纯合体,又由第Ⅲ组实验可推知品系2的基因型为AABB,则Ⅱ组中:P:AAbb×AABB→F1AABb,自交F2:AABB、AABb、AAbb,其中AABB、AABb为无色素.取该植株自交,若后代全为无色素的植株,则其基因型为AABB.
第Ⅲ组实验图解如下:
则F2中无色素纯合子所占比例=(+
)÷(
)=
.
(3)第Ⅰ组实验:P:aabb×AAbb→F1Aabb,自交F2:A_bb(有色素)、aabb(无色素).由Ⅰ、Ⅱ组遗传可知:Ⅰ组F2有色素的基因型为A_bb(1AAbb、2Aabb),Ⅲ组F2有色素的基因型为AAbb,所以可从第I、Ⅱ组的F2中各取一株能产生色素的植株,二者基因型相同的概率是;同理可推知从第I、Ⅲ组的F2中各取一株能产生色素的植株,二者基因型相同的概率是
+
×
=
.
(4)由“基因A是通过控制酶A的合成来催化一种前体物转化为红色色素的.而基因B-b本身并不直接表达性状,但基因B能抑制基因A的表达.”可转换为如下图示:
故答案为:
(1)aabb
(2)AABB
(3)
(4)
解析
解:(1)由“决定产生色素的基因A对a为显性.但另一对等位基因B、b中,显性基因B存在时,会抑制色素的产生,”可推知无色素的基因型为A _ B _、aa_ _,有色素的基因型为A_bb.由品系1×品系2→F1(无色素)---→有色素、
无色素,可推知F1的基因型为AaBb.野生型纯种基因型为AAbb.突变品系1 X 野生型(AAbb)→F1有色素(A_bb)→
有色素、
无色素,看推知该F1基因型为Aabb,进而可推知突变品系1的基因型为aabb.
(2)由于突变品系1和突变品系2都是纯合体,又由第Ⅲ组实验可推知品系2的基因型为AABB,则Ⅱ组中:P:AAbb×AABB→F1AABb,自交F2:AABB、AABb、AAbb,其中AABB、AABb为无色素.取该植株自交,若后代全为无色素的植株,则其基因型为AABB.
第Ⅲ组实验图解如下:
则F2中无色素纯合子所占比例=(+
)÷(
)=
.
(3)第Ⅰ组实验:P:aabb×AAbb→F1Aabb,自交F2:A_bb(有色素)、aabb(无色素).由Ⅰ、Ⅱ组遗传可知:Ⅰ组F2有色素的基因型为A_bb(1AAbb、2Aabb),Ⅲ组F2有色素的基因型为AAbb,所以可从第I、Ⅱ组的F2中各取一株能产生色素的植株,二者基因型相同的概率是;同理可推知从第I、Ⅲ组的F2中各取一株能产生色素的植株,二者基因型相同的概率是
+
×
=
.
(4)由“基因A是通过控制酶A的合成来催化一种前体物转化为红色色素的.而基因B-b本身并不直接表达性状,但基因B能抑制基因A的表达.”可转换为如下图示:
故答案为:
(1)aabb
(2)AABB
(3)
(4)
某种鱼类(XY型)的灰鳞(A)对白鳞(a)为显性,研究人员为了进一步确定该基因在哪类染色体上,选用到了纯合的灰鳞和白鳞,它们雌雄均有.
(1)若要进行实验来判断灰鳞雌鱼是否是纯合,最简便的方法是______(交配方式).
(2)正式实验时.一组用纯合灰鳞雌鱼与白鳞雄鱼杂交,另一组用______杂交,观察并比较两组子代的表现型及其比例,可以得出基因所在的染色体类型.
(3)现已证明该基因在常染色体上,但在研究中发现,另一对常染色体上的一对基因发生显性突变(b→B)时,其表达产物会进入细胞核中,并阻碍灰鳞基因表达的______阶段.由此可以推断,白鳞鱼的相关基因型有______种.现有一灰鳞个体与一白鳞个体杂交,全部子代中灰鳞个体:白鳞个体=1:3,则亲本的基因型分别为______(灰鳞)、______(白鳞).
(4)在群体中发现有一变异个体,基因组成和在染色体上的位置如图所示.该个体发生的变异类型是______.若该个体能正常繁殖,子代能正常发育,则该个体测交产生的后代的表现型及其比例是______.
正确答案
解:(1)检测某一显性动物体是纯合子还是杂合子,可用测交法,即用该灰鳞雌鱼与白鳞雄鱼杂交.
(2)判断基因所在的染色体类型,可用正交和反交法,即一组用纯合灰鳞雌鱼与白鳞雄鱼杂交,另一组用纯合灰鳞雄鱼与白鳞雌鱼杂交,观察并比较两组子代的表现型及其比例.若正交和反交的结果相同,则控制该性状的基因位于常染色体上,反之则位于性染色体上.
(3)基因表达包括转录和翻译两个阶段,其中转录在细胞核中进行,翻译在细胞质的核糖体上进行.另一对常染色体上的一对基因发生显性突变(b→B)时,其表达产物会进入细胞核中,因此阻碍的是灰鳞基因表达的转录阶段.灰鳞(A)对白鳞(a)为显性,B基因的表达产物能阻碍灰鳞基因表达,由此可以推断,白鳞鱼的基因型为A_B_(AaBb、AaBB、AABb、AABB)、aa__(aaBB、aabb、aaBb),共有7种.现有一灰鳞个体(A_bb)与一白鳞个体杂交,全部子代中灰鳞个体(A_bb):白鳞个体=1:3,其中“1:3”是1:1:1:1的变式,说明该交配的类型为测交,由此可知亲本的基因型分别为Aabb(灰鳞)、aaBb(白鳞).
(4)图中有2个A基因,且分布在不同对的同源染色体上,可见其形成原因是非同源染色体之间发生易位,属于染色体变异;由以上分析可知图示个体能产生4种配子,其基因型及比例为AB:AA:aB:Aa=1:1:1:1,其中AA和Aa中都有一个A基因不能表达,则该个体测交产生的后代为AaBb(白磷):AAab(灰鳞):aaBb(白磷):Aaab(A基因不能表达,白磷),因此测交后代的表现型及其比例是灰鳞个体:白鳞个体=1:3.
故答案为:
(1)测交(与白鳞雄鱼杂交)
(2)纯合灰鳞雄鱼与白鳞雌鱼
(3)转录 7 Aabb aaBb
(4)染色体变异 灰鳞个体:白鳞个体=1:3
解析
解:(1)检测某一显性动物体是纯合子还是杂合子,可用测交法,即用该灰鳞雌鱼与白鳞雄鱼杂交.
(2)判断基因所在的染色体类型,可用正交和反交法,即一组用纯合灰鳞雌鱼与白鳞雄鱼杂交,另一组用纯合灰鳞雄鱼与白鳞雌鱼杂交,观察并比较两组子代的表现型及其比例.若正交和反交的结果相同,则控制该性状的基因位于常染色体上,反之则位于性染色体上.
(3)基因表达包括转录和翻译两个阶段,其中转录在细胞核中进行,翻译在细胞质的核糖体上进行.另一对常染色体上的一对基因发生显性突变(b→B)时,其表达产物会进入细胞核中,因此阻碍的是灰鳞基因表达的转录阶段.灰鳞(A)对白鳞(a)为显性,B基因的表达产物能阻碍灰鳞基因表达,由此可以推断,白鳞鱼的基因型为A_B_(AaBb、AaBB、AABb、AABB)、aa__(aaBB、aabb、aaBb),共有7种.现有一灰鳞个体(A_bb)与一白鳞个体杂交,全部子代中灰鳞个体(A_bb):白鳞个体=1:3,其中“1:3”是1:1:1:1的变式,说明该交配的类型为测交,由此可知亲本的基因型分别为Aabb(灰鳞)、aaBb(白鳞).
(4)图中有2个A基因,且分布在不同对的同源染色体上,可见其形成原因是非同源染色体之间发生易位,属于染色体变异;由以上分析可知图示个体能产生4种配子,其基因型及比例为AB:AA:aB:Aa=1:1:1:1,其中AA和Aa中都有一个A基因不能表达,则该个体测交产生的后代为AaBb(白磷):AAab(灰鳞):aaBb(白磷):Aaab(A基因不能表达,白磷),因此测交后代的表现型及其比例是灰鳞个体:白鳞个体=1:3.
故答案为:
(1)测交(与白鳞雄鱼杂交)
(2)纯合灰鳞雄鱼与白鳞雌鱼
(3)转录 7 Aabb aaBb
(4)染色体变异 灰鳞个体:白鳞个体=1:3
扫码查看完整答案与解析