热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题

1919年,卢瑟福用α粒子轰击氮核从而发现质子.其核反应过程是:α粒子轰击静止的氮核后形成了不稳定的复核,复核发生衰变放出质子,变成氧核.设α粒子质量为m1,初速度为v0,氮核质量为/m2,质子质量为m0,氧核的质量为m3,不考虑相对论效应.

①α粒子轰击氮核形成不稳定复核的瞬间,复核的速度为多大?

②求此过程中释放的核能.

正确答案

解:①设复核速度为v,由动量守恒得

m1v0=(m1+m2)v

解得v=

②整个过程中质量亏损△m=m1+m2-m0-m3

由爱因斯坦质能方程△E=△mc2

答:①α粒子轰击氮核形成不稳定复核的瞬间,复核的速度为

②此过程中释放的核能为

解析

解:①设复核速度为v,由动量守恒得

m1v0=(m1+m2)v

解得v=

②整个过程中质量亏损△m=m1+m2-m0-m3

由爱因斯坦质能方程△E=△mc2

答:①α粒子轰击氮核形成不稳定复核的瞬间,复核的速度为

②此过程中释放的核能为

1
题型:简答题
|
简答题

在高h=1.25m的光滑水平桌面上,静止放着一个质量为M=0.98kg的木块,一质量m=20g子弹以水平速度v0射入木块,但没有射出木块,木块的落点距桌边的水平位移s=4m.(取g=10m/s2) 

(1)子弹和木块在空中的飞行时间?

(2)子弹和木块离开桌面的速度大小?

(3)求子弹射入木块前的速度v0多大?

正确答案

解:(1)根据h=得,子弹和木块在空中飞行的时间为:

t=

(2)子弹和木块离开桌面时的速度大小为:

v=

(3)规定子弹运动的方向为正方向,根据动量守恒定律得:

mv0=(M+m)v,

解得:m/s=400m/s.

答:(1)子弹和木块在空中的飞行时间为0.5s;

(2)子弹和木块离开桌面的速度大小为8m/s;

(3)求子弹射入木块前的速度为400m/s.

解析

解:(1)根据h=得,子弹和木块在空中飞行的时间为:

t=

(2)子弹和木块离开桌面时的速度大小为:

v=

(3)规定子弹运动的方向为正方向,根据动量守恒定律得:

mv0=(M+m)v,

解得:m/s=400m/s.

答:(1)子弹和木块在空中的飞行时间为0.5s;

(2)子弹和木块离开桌面的速度大小为8m/s;

(3)求子弹射入木块前的速度为400m/s.

1
题型:简答题
|
简答题

如图所示,有一质量m=20kg的物体,以5m/s的水平初速度冲上一辆质量M=80kg的静止小车.物体在小车上滑行一段距离后相对小车静止.已知物体与小车间的动摩擦因数为0.8,小车与地面间的摩擦可忽略不计,求:

(1)物体相对小车静止时,小车速度的大小?

(2)物体与小车间的摩擦力对物体做的功?

(3)从物体冲上小车到二者相对静止时,小车发生的位移?

(4)由于物体与小车间的摩擦产生了多少热量?

正确答案

解:(1)小车与地面之间没有摩擦力,系统的动量守恒,

根据系统的动量守恒可得,

mv=(M+m)v

即20×5=(20+80)v

解得 v=1m/s,

即物体相对小车静止时,小车速度大小为1m/s.

(2)根据动能定理可得,物体与小车间的摩擦力对物体做的功等于物体的动能的变化,

所以W=mv2-mv2=×20×12-×20×52=-240J,

所以物体与小车间的摩擦力对物体做的功为-240J.

(3)物体和车之间的摩擦力的大小为f=μmg=0.8×200N=160N,

对小车由动能定理可得,

W=fS=Mv2

即160S=×80×12=40J,

所以S=0.25m,

(4)根据总的能量守恒可得,

产生的热量 Q=mv2-mv2-Mv2=×20×52-×20×12-×80×12=200J.

答:(1)物体相对小车静止时,小车速度的大小为1m/s;

(2)物体与小车间的摩擦力对物体做的功为-240J;

(3)从物体冲上小车到二者相对静止时,小车发生的位移为0.25m;

(4)由于物体与小车间的摩擦产生的热量为200J.

解析

解:(1)小车与地面之间没有摩擦力,系统的动量守恒,

根据系统的动量守恒可得,

mv=(M+m)v

即20×5=(20+80)v

解得 v=1m/s,

即物体相对小车静止时,小车速度大小为1m/s.

(2)根据动能定理可得,物体与小车间的摩擦力对物体做的功等于物体的动能的变化,

所以W=mv2-mv2=×20×12-×20×52=-240J,

所以物体与小车间的摩擦力对物体做的功为-240J.

(3)物体和车之间的摩擦力的大小为f=μmg=0.8×200N=160N,

对小车由动能定理可得,

W=fS=Mv2

即160S=×80×12=40J,

所以S=0.25m,

(4)根据总的能量守恒可得,

产生的热量 Q=mv2-mv2-Mv2=×20×52-×20×12-×80×12=200J.

答:(1)物体相对小车静止时,小车速度的大小为1m/s;

(2)物体与小车间的摩擦力对物体做的功为-240J;

(3)从物体冲上小车到二者相对静止时,小车发生的位移为0.25m;

(4)由于物体与小车间的摩擦产生的热量为200J.

1
题型:简答题
|
简答题

在光滑水平面上有一个静止的质量为M的木块,一颗质量为m的子弹以初速v0水平射入木块,且陷入木块的最大深度为d.设冲击过程中木块的运动位移为s,子弹所受阻力恒定.试证明:s<d.

正确答案

解:如图所示,

m冲击M的过程,m、M组成的系统水平方向不受外力,动量守恒mv0=(m+M)v

设子弹所受阻力的大小为F,由动能定理得:

对M:(3分)

对m:

联立上式解得:

,所以s<d.

解析

解:如图所示,

m冲击M的过程,m、M组成的系统水平方向不受外力,动量守恒mv0=(m+M)v

设子弹所受阻力的大小为F,由动能定理得:

对M:(3分)

对m:

联立上式解得:

,所以s<d.

1
题型:简答题
|
简答题

(2016春•河南月考)如图所示,质量为M=3kg的小车静止在光滑的水平面上,小车上表面粗糙程度均相同,且离地面高度为h=0.8m,一质量为m=1kg的滑块(可视为质点)从小车左侧以v0=5m/s的速度滑上小车,在小车运动了t=2s后,从小车右端飞出,最后落在水平地面上,测得滑块滑上小车位置和落地点之间的水平距离为s=7.8m,重力加速度大小为g=10m/s2.求:

(1)离开小车时滑块的速度;

(2)小车的末速度及小车的长度.

正确答案

解:(1)滑块离开小车后做平抛运动,运动的时间为:

s

设滑块离开小车时的速度为v1,则有:

代入数据得:v1=2m/s

(2)设小车的末速度为v2,由于滑块在小车上滑动的过程中,滑块与小车组成的系统沿水平方向的动量守恒,选择 向右为正方向,则有:

mv0=mv1+Mv2

代入数据得:v2=1m/s

所以小车的长度为:l==m

答:(1)离开小车时滑块的速度是2m/s;

(2)小车的末速度是1m/s,小车的长度是6m.

解析

解:(1)滑块离开小车后做平抛运动,运动的时间为:

s

设滑块离开小车时的速度为v1,则有:

代入数据得:v1=2m/s

(2)设小车的末速度为v2,由于滑块在小车上滑动的过程中,滑块与小车组成的系统沿水平方向的动量守恒,选择 向右为正方向,则有:

mv0=mv1+Mv2

代入数据得:v2=1m/s

所以小车的长度为:l==m

答:(1)离开小车时滑块的速度是2m/s;

(2)小车的末速度是1m/s,小车的长度是6m.

下一知识点 : 动量守恒定律的应用
百度题库 > 高考 > 物理 > 动量守恒定律

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题