- 动量守恒定律
- 共5880题
如图所示,质量为m的木块和质量为M的铁块用细线系在一起,浸没在水中,以速度v0匀速下降,剪断细线后经过一段时间,木块的速度大小为v0,方向竖直向上,此时木块还未浮出水面,铁块还未沉到水底,求此时铁块下沉的速度为多大.
正确答案
解:剪断细线后,木块还未浮出水面、铁块还未沉到水底前,系统受到的重力和浮力均不变,合外力仍为零,故系统的动量守恒.取竖直向下为正方向,列出系统动量守恒的方程为:
(M+m)v0=Mvm+(-mv0).
解得此时铁块下沉的速度为:
答:此时铁块下沉的速度为.
解析
解:剪断细线后,木块还未浮出水面、铁块还未沉到水底前,系统受到的重力和浮力均不变,合外力仍为零,故系统的动量守恒.取竖直向下为正方向,列出系统动量守恒的方程为:
(M+m)v0=Mvm+(-mv0).
解得此时铁块下沉的速度为:
答:此时铁块下沉的速度为.
在光滑水平面上有三个完全相同的小球排成一条直线.2、3小球静止,并靠在一起,1球以速度v0射向它们,如图所示.设碰撞中不损失机械能,则碰后三个小球的速度可能值是( )
正确答案
解析
解:A、2、3小球静止,并靠在一起,1球以速度v0射向它们,碰撞前系统动量为mv0,
如果碰后三个小球的速度v1=v2=v3=v0,碰撞后系统动量为
mv0,不符合碰撞中系统动量守恒,故A错误.
B、如果v1=0,v2=v3=v0,碰撞后系统动量为
mv0,不符合碰撞中系统动量守恒,故B错误.
C、选项中数据符合系统动量守恒定律,碰撞前系统动能为
v1=0,v2=v3=v0,碰撞后系统动能为
,不符合机械能守恒,故C错误.
D、本题的关键在于分析清楚实际的碰撞过程:由于球1与球2发生碰撞时间极短,球2的位置来不及发生变化,这样球2对球3也就无法产生力的作用,即球3不会参与此次碰撞过程.而球1与球2发生的是弹性碰撞,质量又相等,故它们在碰撞中实现速度交换,碰后球1立即停止,球2速度立即变为v0;此后球2与球3碰撞,再一次实现速度交换.所以碰后球1、球2的速度为零,球3速度为v0.故D正确.
故选D.
如图所示,在光滑平直轨道上有A、B、C三个物体,其中A的质量为2m,B、C质量均为m,物体A以速度v0向右运动,物体B、C均静止.A与B发生弹性碰撞,B、C碰撞后粘合在一起.求:
①A与B碰撞后B的速度大小;
②整个过程中,系统由于碰撞增加的内能.
正确答案
解:①A、B发生弹性碰撞,碰撞过程动量守恒、机械能守恒,以向右为正方向,由动量守恒定律得:
2mv0=2mvA+mvB,
由机械能守恒定律得:•2mv02=
•2mvA2+
mvB2,
解得:vB=v0;
②设B与C碰撞过程系统动量守恒,以向右为正方向,由动量守恒定律得:
mvB=2mv,
解得:v=v0,
对整个过程,由能量守恒定律得,系统增加的内能:
Q=mvB2-
•2mv2,Q=
mv02;
答:①A与B碰撞后B的速度大小为v0;
②整个过程中,系统由于碰撞增加的内能为mv02.
解析
解:①A、B发生弹性碰撞,碰撞过程动量守恒、机械能守恒,以向右为正方向,由动量守恒定律得:
2mv0=2mvA+mvB,
由机械能守恒定律得:•2mv02=
•2mvA2+
mvB2,
解得:vB=v0;
②设B与C碰撞过程系统动量守恒,以向右为正方向,由动量守恒定律得:
mvB=2mv,
解得:v=v0,
对整个过程,由能量守恒定律得,系统增加的内能:
Q=mvB2-
•2mv2,Q=
mv02;
答:①A与B碰撞后B的速度大小为v0;
②整个过程中,系统由于碰撞增加的内能为mv02.
静止的锂核俘获一个速度为8×106m/s的中子,发生核反应后若只产生了两个新粒子,其中一个粒子为氮
核,它的速度大小是8×106m/s,方向与反应前的中于速度方向相同①完成此核反应的方程式
+
→
+______②反应后产生的另一个粒子的速度大小______m/s,方向______.
正确答案
8×106
与中子运动方向相反
解析
解:根据电荷数守恒、质量数守恒,+
→
+
.
规定中子的方向为正方向,根据动量守恒定律得,mnvn=mHevHe+mHvH
代入数据解得m/s,知与 中子运动方向相反.
故答案为:①②8×106与中子运动方向相反
如图甲所示,位于竖直平面内的轨道,由一段斜的光滑直轨道MO和一段水平的粗糙直轨道ON连接而成,以O为原点建立坐标轴.滑块A从轨道MO上相对于水平轨道高h=0.20m处由静止开始下滑,进入水平轨道时无机械能损失.滑块B置于水平轨道上x1=0.40m处.A、B间存在相互作用的斥力,斥力F与A、B间距离s的关系如图乙所示.当滑块A运动到x2=0.20m处时,滑块B恰好开始运动;滑块A向右运动一段距离后速度减为零,此时滑块B的速度vB=0.07m/s;之后滑块A沿x轴负方向运动,其最大速度vA=0.14m/s.已知滑块A、B均可视为质点,质量均为m=1.0kg,它们与水平轨道间的动摩擦因数相同,且最大静摩擦力等于滑动摩擦力.取重力加速度g=10m/s2.求:
(1)滑块A从轨道MO滑下,到达O点时速度的大小v;
(2)滑块与水平轨道间的动摩擦因数μ;
(3)整个运动过程中,滑块B的最大速度vmax.
正确答案
解:(1)滑块A沿轨道MO下滑的过程机械能守恒.取水平轨道所在平面为零势能平面,根据机械能守恒定律
所以m/s
(2)当滑块A运动到x2=0.20m处时,A、B间的距离为0.20m,由图乙可知,A、B间斥力的大小F=5.0N.当B恰好开始运动时,根据牛顿第二定律F-μmg=0
所以μ=0.50
(3)由题意可知:当滑块A向左的速度最大时,滑块B的速度也达到最大.
在滑块A沿x轴负方向运动的过程中,滑块A、B所受的摩擦力大小相等、方向相反,所以滑块A、B组成的系统动量守恒,则0+mvB=-mvA+mvmax,
所以vmax=0.21m/s
答:(1)滑块A从轨道MO滑下,到达O点时速度的大小v为2.0m/s;
(2)滑块与水平轨道间的动摩擦因数μ为0.50;
(3)整个运动过程中,滑块B的最大速度vmax为0.21m/s.
解析
解:(1)滑块A沿轨道MO下滑的过程机械能守恒.取水平轨道所在平面为零势能平面,根据机械能守恒定律
所以m/s
(2)当滑块A运动到x2=0.20m处时,A、B间的距离为0.20m,由图乙可知,A、B间斥力的大小F=5.0N.当B恰好开始运动时,根据牛顿第二定律F-μmg=0
所以μ=0.50
(3)由题意可知:当滑块A向左的速度最大时,滑块B的速度也达到最大.
在滑块A沿x轴负方向运动的过程中,滑块A、B所受的摩擦力大小相等、方向相反,所以滑块A、B组成的系统动量守恒,则0+mvB=-mvA+mvmax,
所以vmax=0.21m/s
答:(1)滑块A从轨道MO滑下,到达O点时速度的大小v为2.0m/s;
(2)滑块与水平轨道间的动摩擦因数μ为0.50;
(3)整个运动过程中,滑块B的最大速度vmax为0.21m/s.
扫码查看完整答案与解析