热门试卷

X 查看更多试卷
1
题型: 单选题
|
单选题 · 5 分

8.已知直线与抛物线相交于两点,的焦点,若,则(     )

A

B

C

D

正确答案

D

解析

解析已在路上飞奔,马上就到!

知识点

抛物线的标准方程和几何性质直线与圆锥曲线的综合问题
1
题型:简答题
|
简答题 · 13 分

20.已知椭圆的左、右焦点分别为,椭圆上的点满足,且的面积为.

(1)求椭圆C的方程;

(2)设椭圆的左、右顶点分别为,过点的动直线与椭圆相交于两点,直线与直线的交点为,证明:点总在直线上。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程直线与圆锥曲线的综合问题圆锥曲线的定点、定值问题
1
题型:简答题
|
简答题 · 12 分

20.如图,已知抛物线方程为

(1)直线过抛物线的焦点F,且垂直于x轴,与抛物线交于A、B两点,求AB的长度。

(2)直线过抛物线的焦点,且倾斜角为,直线与抛物线相交于C、D两点,O为原点。求△OCD的面积。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

抛物线的标准方程和几何性质直线与圆锥曲线的综合问题
1
题型:简答题
|
简答题 · 14 分

20. 如图,已知抛物线和⊙,过抛物线上一点作两条直线与⊙相切于两点,分别交抛物线为E、F两点,圆心点到抛物线准线的距离为

(1)求抛物线的方程;

(2)当的角平分线垂直轴时,求直线的斜率;

(3)若直线轴上的截距为,求的最小值

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

抛物线的标准方程和几何性质直线与圆锥曲线的综合问题圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

22.已知抛物线,过点的直线与抛物线交于两点,且直线与轴交于点.

(1)求证:成等比数列;

(2)设,试问是否为定值,若是,求出此定值;若不是,请说明理由.

正确答案

解:(1)设直线的方程为:

联立方程可得得:               ①

,则  ②

,∴

成等比数列             

(2)由得,

即得:,则

由(1)中②代入得,故为定值且定值为

解析

解析已在路上飞奔,马上就到!

知识点

向量在几何中的应用等比数列的判断与证明抛物线的标准方程和几何性质直线与圆锥曲线的综合问题圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 13 分

20. 设椭圆C:的左焦点为,上顶点为,过点作垂直于直线交椭圆于另外一点,交轴正半轴于点,且

(1)求椭圆的离心率;

(2)若过三点的圆恰好与直线l:相切,求椭圆C的方程。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程椭圆的几何性质直线与圆锥曲线的综合问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

20.设椭圆的左、右焦点分别为F1、F2,下顶点为A,离心率,若直线l:过点A.

(I)求椭圆C的方程;

(II)在(I)的条件下,过右焦点F2作斜率为k的直线与椭圆C交于M、N两点,在x轴上是否存在点p(m,0),使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围;如果不存在,说明理由.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程直线与圆锥曲线的综合问题圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 12 分

20. 已知点是椭圆E:)上一点,分别是椭圆的左、右焦点,是坐标原点,轴.

(1)求椭圆的方程

(2)设是椭圆上两个动点,.求证:直线的斜率为定值;

正确答案

解:(1)∵PF1⊥x轴,

∴F1(-1,0),c=1,F2(1,0),

|PF2|=,2a=|PF1|+|PF2|=4,a=2,b2=3,

椭圆E的方程为:

(2)设A(x1,y1)、B(x2,y2),由

(x1+1,y1-)+(x2+1,y2-)=(1,- ),

所以x1+x2=-2,y1+y2=(2-………①

两式相减得3(x1+x2)(x1-x2)+ 4(y1+y2)(y1-y2)=0………..②

以①式代入可得AB的斜率k=为定值;

解析

解析已在路上飞奔,马上就到!

知识点

向量在几何中的应用椭圆的定义及标准方程直线与圆锥曲线的综合问题圆锥曲线的定点、定值问题
1
题型:简答题
|
简答题 · 12 分

20.已知定点,B是圆(C为圆心)上的动点,AB的垂直平分线与BC交于点E.

(1)求动点E的轨迹方程;

(2)设直线与E的轨迹交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:OPQ面积的最大值及此时直线的方程.

正确答案

解:(1)由题知     

 点E的轨迹是以A,C为焦点,长轴长为4的椭圆,

E的轨迹方程为                   

(2)设,PQ的中点为

将直线联立得

,即  ①

依题意有,整理得    ②  

由①②可得

                    

设O到直线的距离为,则

时,的面积取最大值1,此时

直线方程为

解析

解析已在路上飞奔,马上就到!

知识点

直线的一般式方程直线与圆锥曲线的综合问题定义法求轨迹方程
1
题型:简答题
|
简答题 · 13 分

21.在平面直角坐标系中,已知椭圆C:的左焦点为,且椭圆C的离心率.

(1)求椭圆C的方程;

(2)设椭圆C的上下顶点分别为,Q是椭圆C上异于的任一点,直线分别交x轴于点S,T,证明:为定值,并求出该定值;

(3)在椭圆C上,是否存在点,使得直线与圆相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程直线与圆锥曲线的综合问题圆锥曲线中的范围、最值问题圆锥曲线的定点、定值问题圆锥曲线中的探索性问题
下一知识点 : 曲线与方程
百度题库 > 高考 > 文科数学 > 直线与圆锥曲线的位置关系

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题