- 圆的切线的性质及判定定理
- 共255题
选做题
如图,已知圆上的弧AC=弧BD,过C的圆的切线与的A长线交于
点。
(1)证明:;
(2)若,求
的长
正确答案
解:(1)∵,∴∠ABC=∠BCD
又∵EC为圆的切线
∴∠ACE=∠ABC
∴∠ACE=∠BCD
(2)由圆内接四边形ABCD,
∴∠CDB=∠EAC∴∠EAC=∠BEC
由三角形BCE相似于三角形CDB
,BC=2。
如图:
已知圆上的弧=
,过C点的圆的切线与BA的延长线交于E点,证明:
(Ⅰ)∠ACE=∠BCD.
(Ⅱ)BC2=BE×CD.
正确答案
(Ⅰ)因为=
,
所以∠BCD=∠ABC.
又因为EC与圆相切于点C,
故∠ACE=∠ABC
所以∠ACE=∠BCD.(5分)
(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,
所以△BDC~△ECB,
故=
.
即BC2=BE×CD.(10分)
(选做题)
如图所示,已知AB是圆O的直径,AC是弦,AD⊥CE,垂足为D,AC平分∠BAD。
(Ⅰ)求证:直线CE是圆O的切线;
(Ⅱ)求证:AC2=AB·AD。
正确答案
证明:(Ⅰ)连接OC,因为OA=OC,所以,
又因为,所以
,
又因为AC平分∠BAD,所以,
所以,即
,
所以CE是⊙O的切线;
(Ⅱ)连接BC,因为AB是圆O的直径,所以,
因为,
所以,
所以,
即。
⊙O内切于△ABC的边于D,E,F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G。
(1)求证:圆心O在直线AD上;
(2)求证:点C是线段GD的中点。
正确答案
解:(1 )∵
∴
又∵
∴
又∵是等腰三角形
∴是
的角分线
∴圆心O在直线AD上。
(2)连接DF,由(1)知,DH是⊙O的直径,
∴
∴
又∵
∴
∵与AC相切于点F
所以
∴
∴
∴点C是线段GD的中点。
已知:直线AB过圆心O,交⊙O于AB,直线AF交⊙O于F(不与B重合),直线l与⊙O相切于C,交AB于E,且与AF垂直,垂足为G,连结AC。
(1)∠BAC=∠CAG;
(2)AC2=AE·AF。
正确答案
解:(1)连结BC,由AB为⊙O的直径所以
又因为
又因为GC与⊙O相切于C,
所以
所以;
(2)由(1)可知,连结CF
又因为GE与⊙O相切于C,
所以
所以
所以
所以
所以。
扫码查看完整答案与解析