- 圆的切线的性质及判定定理
- 共255题
如图,AB是圆O的直径,C,D是圆O上两点,AC与BD相交于点E,GC,GD是圆O的切线,点F在DG的延长线上,且DG=GF.求证:
(1)D、E、C、F四点共圆;
(2)GE⊥AB.
正确答案
解:(Ⅰ)如图,连接OC,OD,则OC⊥CG,OD⊥DG,
∴四点O,D,G,C共圆.
设∠CAB=∠1,∠DBA=∠2,∠ACO=∠3,
∠COB=2∠1,∠DOA=2∠2.
∴∠DGC=180°-∠DOC=2(∠1+∠2).
∵DG=GF,DG=CG.
∴GF=GC.
∴∠GCF=∠F.
∵∠DGC=2∠F,∴∠F=∠1+∠2.
又∵∠DEC=∠AEB=180°-(∠1+∠2),
∴∠DEC+∠F=180°,
∴D,E,C,F四点共圆.
(Ⅱ)延长GE交AB于H.
∵GD=GC=GF,∴点G是经过D,E,C,F四点的圆的圆心.
∴GE=GC,∴∠GCE=∠GEC.
又∵∠GCE+∠3=90°,∠1=∠3,
∴∠GEC+∠3=90°,∴∠AEH+∠1=90°,
∴∠EHA=90°,即GE⊥AB.
解析
解:(Ⅰ)如图,连接OC,OD,则OC⊥CG,OD⊥DG,
∴四点O,D,G,C共圆.
设∠CAB=∠1,∠DBA=∠2,∠ACO=∠3,
∠COB=2∠1,∠DOA=2∠2.
∴∠DGC=180°-∠DOC=2(∠1+∠2).
∵DG=GF,DG=CG.
∴GF=GC.
∴∠GCF=∠F.
∵∠DGC=2∠F,∴∠F=∠1+∠2.
又∵∠DEC=∠AEB=180°-(∠1+∠2),
∴∠DEC+∠F=180°,
∴D,E,C,F四点共圆.
(Ⅱ)延长GE交AB于H.
∵GD=GC=GF,∴点G是经过D,E,C,F四点的圆的圆心.
∴GE=GC,∴∠GCE=∠GEC.
又∵∠GCE+∠3=90°,∠1=∠3,
∴∠GEC+∠3=90°,∴∠AEH+∠1=90°,
∴∠EHA=90°,即GE⊥AB.
选作题,本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.(几何证明选讲)
如图,已知两圆交于A、B两点,过点A、B的直线分别与两圆交于P、Q和M、N.求证:PM∥QN.
B.(矩阵与变换)
已知矩阵A的逆矩阵A-1=,求矩阵A.
C.(极坐标与参数方程)
在平面直角坐标系xOy中,过椭圆在第一象限处的一点P(x,y)分别作x轴、y轴的两条垂线,垂足分别为M、N,求矩形PMON周长最大值时点P的坐标.
D.(不等式选讲)
已知关于x的不等式|x-a|+1-x>0的解集为R,求实数a的取值范围.
正确答案
解:A.连接AB,易得∠ABN=∠APM,∠ABN+∠AQN=π,
所以∠APM+∠AQN=π,
又点P,A,Q三点共线,
故PM∥QN.
B.设,则由AA-1=E得
,
解得所以
.
C.设(α为参数),
则矩形PMON周长的一半为:,
所以,当时,矩形PMON周长取最大值4×2=8,
此时,点P(3,1).
D.证明:若x-1<0,则a∈R;
若x-1≥0,则(x-a)2>(x-1)2对任意的x∈[1,+∞)恒成立,
即(a-1)[(a+1)-2x]>0对任意的x∈[1,+∞)恒成立,
所以或
对任意的x∈[1,+∞)恒成立,
解得a<1.
解析
解:A.连接AB,易得∠ABN=∠APM,∠ABN+∠AQN=π,
所以∠APM+∠AQN=π,
又点P,A,Q三点共线,
故PM∥QN.
B.设,则由AA-1=E得
,
解得所以
.
C.设(α为参数),
则矩形PMON周长的一半为:,
所以,当时,矩形PMON周长取最大值4×2=8,
此时,点P(3,1).
D.证明:若x-1<0,则a∈R;
若x-1≥0,则(x-a)2>(x-1)2对任意的x∈[1,+∞)恒成立,
即(a-1)[(a+1)-2x]>0对任意的x∈[1,+∞)恒成立,
所以或
对任意的x∈[1,+∞)恒成立,
解得a<1.
如图,直线AB过圆心O,交圆O于A、B,直线AF交圆O于F(不与B重合),直线L与圆O相切于C,交AB于E,且与AF垂直,垂足为G,连接AC.求证:
(Ⅰ)∠BAC=CAG;
(Ⅱ)AC2=AE•AF.
正确答案
证明:(Ⅰ)连接BC,
∵AB是直径,
∴∠ACB=90°,
∴∠ACB=∠AGC=90°.(2分)
∵GC切圆O于C,
∴∠GCA=∠ABC.(4分)
∴∠BAC=∠CAG.(5分)
(Ⅱ)连接CF,∵EC切圆O于C,∴∠ACE=∠AFC.(6分)
又∠BAC=∠CAG,∴△ACF∽△AEC.(8分)
∴,∴AC2=AE•AF(10分)
解析
证明:(Ⅰ)连接BC,
∵AB是直径,
∴∠ACB=90°,
∴∠ACB=∠AGC=90°.(2分)
∵GC切圆O于C,
∴∠GCA=∠ABC.(4分)
∴∠BAC=∠CAG.(5分)
(Ⅱ)连接CF,∵EC切圆O于C,∴∠ACE=∠AFC.(6分)
又∠BAC=∠CAG,∴△ACF∽△AEC.(8分)
∴,∴AC2=AE•AF(10分)
如图,已知AB是⊙O的直径,AB⊥CD于E,切线BF交AD的延长线于F,若AB=10,CD=8,则切线BF的长是______.
正确答案
解:连接OD,
AB⊥CD于E,根据垂径定理得到DE=4,
在直角△ODE中,根据勾股定理得到OE=3,因而AE=8,
易证△ABF∽△AED,得到=
=
,
解得BF=5.
故填:5.
解析
解:连接OD,
AB⊥CD于E,根据垂径定理得到DE=4,
在直角△ODE中,根据勾股定理得到OE=3,因而AE=8,
易证△ABF∽△AED,得到=
=
,
解得BF=5.
故填:5.
如图,已知AB,CD是外离两圆⊙O1,与⊙O2的外公共切线,切点为A,B,C,求证:A,B,C,D四点共圆.
正确答案
证明:连接AC,O1A,O1C,BD,O2B,O2D,则
因为AB,CD是外离两圆⊙O1,与⊙O2的外公共切线,
所以△O1AC∽△O2BD,
所以∠O1CA=∠O2BD,
所以∠ACD+∠ABD=∠O1CA+∠OCD+∠OBA-∠O2BD=180°,
所以A,B,C,D四点共圆.
解析
证明:连接AC,O1A,O1C,BD,O2B,O2D,则
因为AB,CD是外离两圆⊙O1,与⊙O2的外公共切线,
所以△O1AC∽△O2BD,
所以∠O1CA=∠O2BD,
所以∠ACD+∠ABD=∠O1CA+∠OCD+∠OBA-∠O2BD=180°,
所以A,B,C,D四点共圆.
扫码查看完整答案与解析