- 算法初步
- 共2983题
编写程序,求平方不超过999 999的最大整数.
正确答案
解:i=1;
while j*j<="999" 999
j=j+1;
end
j=j-1
考虑循环程序,因为不知道循环的次数,所以利用while循环语句.
执行如图2所示的程序框图,若输入的值为6,则输出
的值为__________
正确答案
15
试题分析:
如图所示的循环结构是当型循环结构,
它所表示的算式为s=1×3×5×…×(2i-1)
∴输入n的值为6时,输出s的值s=1×3×5=15.
故选S.
点评:解决该试题的关键是能理解本循环结构是当型循环结构,它所表示的算式为s=1×3×5×…×(2i-1),由此能够求出结果。
如图是一个算法的流程图,则最后输出的___▲___.
正确答案
16
1. S=0,n=1
2. S=1,n=3
3. S=3,n=5
4. S=5,n=7
5. S=7,n=9
6. 输出S=7
执行如图所示的程序框图,若输出的n=5,则输入整数p的最小值是 .
正确答案
8
略
阅读如图所示的流程图,运行相应的程序,输出的结果是________.
正确答案
8
由框图可知,程序运行时,数值S与n对应变化如下表:
故S=2时,输出n=8.
某地区打的士收费办法如下:不超过2公里 收7元,超过2公里时,每车收燃油附加费1元,并且超过的里程每公里收2.6元,(其他因素不考虑)计算收费标准的框图如图所示, 则①处应填____________;
正确答案
解:当满足条件x>2时,即里程超过2公里,
超过2公里时,每车收燃油附加费1元,并且超过的里程每公里收2.6元
∴y=2.6(x-2)+7+1=8+2.6(x-2),即整理可得:y=2.6x+2.8.
故答案为y=2.6x+2.8.
任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否存在,画出这个算法的程序框图.
正确答案
解:程序框图如下:
判断分别以这3个数为三边边长的三角形是否存在,只需要验证这3个数当中任意两个数的和是否大于第3个数,这就需要用到条件分支结构.
已知函数设计一个算法步骤求
的值.
正确答案
见解析
算法步骤如下:
第一步,输入x.
第二步,x=3.
第三步,.
第四步,.
第五步,.
第六步,.
第七步,.
第八步,.
第九步,输出y.
(2012•广东)执行如图所示的程序框图,若输入n的值为8,则输出的s的值为 _________ .
正确答案
8
当i=2,k=1时,s=2,;
当i=4,k=2时,s=(2×4)=4;
当i=6,k=3时,s=(4×6)=8;
当i=8,k=4时,不满足条件“i<8”,退出循环,
则输出的s=8
(本小题满分12分)在国家法定工作日内,每周满工作量的时间为40小时,若每周工作时间不超过40小时,则每小时工资25元;如因需要加班,超过40小时的每小时工资为50元.某公务员在一周内工作时间为小时,但他须交纳个人住房公积金和失业保险(这两项费用为每周总收入的10%).试分析算法步骤并画出其每周净得工资
元的算法的程序框图.(注:满工作量外的工作时间为加班)
正确答案
程序框图:
本试题主要是考查了算法的含义以及在实际生活中运写出算法的步骤以及表示的框图的综合运用。运用最直观的图形给与解释,这是算法的优点。
解:算法如下:
第一步,输入工作时间小时;
第二步,若,则
即
,否则
即
;
第三步,输出y值.
程序框图:
存优区间为[ 0,100 ],用0.618法确定试点,第一个试点位置为 .
正确答案
61.8或38.2
解:据0.618法,第一试点x1应选在0+(100-0)=61.8或者100-31.8=38.2
有一列数1,2,5,26,…,你能找出它的规律吗?下面的程序框图所示是输出这个数列的前10项,并求和的算法,试将框图补充完整,并写出相应的程序.
正确答案
①m=m*m+1;②i=i+1
程序:
S=0;m=0;
for i=1:1:10
m=m*m+1;
print m
S=S+m
end
S
这列数的规律是从第2项起每个数是前一个数的平方加1.设变量m,用m=m*m+1实现递推.
下面的程序框图输出的结果是______________.
正确答案
20
a=5满足条件a≥4,S=5,a=4,满足条件a≥4,S=20,a=3,
不满足满足条件a≥4,输出S即20.
执行右面的程序框图,如果输入的N是5,那么输出的S是_________.
正确答案
-399
第一次运行:,第二次运行:
;第三次运行:
;第四次运行:
,程序结束,故输出的S为-399
将某科成绩分为3个等级:85—100为“A”;60—84为“B”;60以下为“C”.试用条件分支结构的框图表示某个学生成绩等级的算法.
正确答案
解:程序框图如图:
输入一个学生的成绩,然后判断在哪个分数段内,从而输出相应的等级.
扫码查看完整答案与解析