热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 16 分

已知的三个顶点在抛物线:上运动,

(1)求的准线方程;

(2)已知点的坐标为为抛物线的焦点,求的最小值,并求此时点的坐标;

(3)若点在坐标原点,边过定点, 点上,且 ,求点的轨迹方程.

正确答案

见解析

解析

(1)由    所以 准线为       ……3分

(2)由 所以,焦点坐标为       ……4分

作准线 的垂线,垂足为 ,当且仅当三点共线时,

的最小值,为,       ……7分

此时点的坐标为       ……9分

(3)设点的坐标为,边所在的方程为(显然存在的), ①……10分

的斜率为,则有  ,既代入①     ……14分

点轨迹为 (注:没写扣1分)             ……16分

知识点

圆的标准方程
1
题型:简答题
|
简答题 · 16 分

已知圆O的内接△ABC中,D为BC上一点,且△ADC为正三角形,点E为BC的延长线上一

点,AE为圆O的切线,求证:CD2=BD·EC。

正确答案

见解析。

解析

因为AE为圆O的切线,所以∠ABD=∠CAE,             

因为△ACD为等边三角形,所以∠ADC=∠ACD,

所以∠ADB=∠ECA,所以△ABD∽△EAC,               

所以,即AD·CA=BD·EC,                     

因为△ACD为等边三角形,所以AD=AC=CD,

所以CD2=BD·EC.

知识点

圆的标准方程
1
题型:填空题
|
填空题 · 5 分

在平面直角坐标系xOy中,直线l的参数方程为(参数t∈R),圆C的参数方程为(参数θ∈[0,2π)),则圆心到直线l的距离是   。

正确答案

解析

直线方程为y=x+1,圆的方程为(x﹣1)2+y2=1。

于是圆心(1,0)到直线x﹣y+1=0的距离为

故答案为:

知识点

圆的标准方程
1
题型:简答题
|
简答题 · 14 分

已知圆C方程:(x-1)2 + y 2=9,垂直于x轴的直线L与圆C相切于N点(N在圆心C的右侧),平面上有一动点P,若PQ⊥L,垂足为Q,且

(1)求点P的轨迹方程; 

(2)已知D为点P的轨迹曲线上第一象限弧上一点,O为原点,A、B分别为点P的轨迹曲线与x,y轴的正半轴的交点,求四边形OADB的最大面积及D点坐标.

正确答案

见解析。

解析

(1)设点坐标为,分

因为,所以

化简得

所以点的轨迹方程是

(2)依题意得,点坐标为点坐标为

点坐标为

则四边形的面积,

又因为,所以

所以,即

所以四边形的最大面积为

当四边形的面积取最大时,,即

此时点坐标为

知识点

圆的标准方程
1
题型:简答题
|
简答题 · 16 分

已知椭圆的左、右焦点分别为, 点是椭圆的一个顶点,△是等腰直角三角形。

(1)求椭圆的方程;

(2)设点是椭圆上一动点,求线段的中点的轨迹方程;

(3)过点分别作直线交椭圆于两点,设两直线的斜率分别为,且,探究:直线是否过定点,并说明理由.

正确答案

见解析

解析

(1)由已知可得 ,  ………2分

所求椭圆方程为,………4分

(2)设点的中点坐标为,

     ………6分

,代入上式  ………8分

     ………10分

(3)若直线的斜率存在,设方程为,依题意

 得 。      ………11分

由已知

所以

。  ………12分

所以,整理得

故直线的方程为,即

所以直线过定点()。   ………14分

若直线的斜率不存在,设方程为

由已知

,此时方程为,显然过点()。

综上,直线过定点()。                       ………16分

知识点

圆的标准方程
1
题型:简答题
|
简答题 · 13 分

已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于

(1)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;

(2)当时,过点的直线交曲线两点,设点关于轴的对称点为(不重合),求证直线轴的交点为定点,并求出该定点的坐标。

正确答案

见解析

解析

(1)由题知:

化简得:   ……………………………2分

时 轨迹表示焦点在轴上的椭圆,且除去两点;

时 轨迹表示以为圆心半径是1的圆,且除去两点;

时  轨迹表示焦点在轴上的椭圆,且除去两点;

时   轨迹表示焦点在轴上的双曲线,且除去两点;

……………………6分

(2)设

依题直线的斜率存在且不为零,则可设:

代入整理得

,  ………………………9分

又因为不重合,则

的方程为 令

故直线过定点.    ……………………13分

解二:设

依题直线的斜率存在且不为零,可设:

代入整理得:

,,……………………9分

的方程为   令

直线过定点   ……………………13分

知识点

圆的标准方程
1
题型:简答题
|
简答题 · 15 分

如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB。点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点。

(1)若∠PAB=30°,求以MN为直径的圆方程;

(2)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点。

正确答案

见解析。

解析

建立如图所示的直角坐标系,

⊙O的方程为

直线L的方程为

(1)∵∠PAB=30°,∴点P的坐标为

将x=4代入,得

∴MN的中点坐标为(4,0),MN=

∴以MN为直径的圆的方程为

同理,当点P在x轴下方时,所求圆的方程仍是

(2)设点P的坐标为,∴),∴

将x=4代入,得

。∴,MN=

MN的中点坐标为

以MN为直径的圆截x轴的线段长度为

为定值。

∴⊙必过⊙O 内定点

知识点

圆的标准方程
1
题型:填空题
|
填空题 · 5 分

已知过某定圆上的每一点均可以作两条相互垂直的直线与椭圆的公共点都各只有一个,那么该定圆的方程为  ▲  。

正确答案

解析

易得椭圆的外切矩形的四个顶点必在该定圆上,则该定圆必是该外切矩形

的外接圆,方程为,可以验证过该圆上除点的任意一点也均可作两条相互

垂直的直线与椭圆的交点都各只有一个;

知识点

圆的标准方程
1
题型:填空题
|
填空题 · 5 分

已知F1、F2分别是椭圆的左、右焦点,点P是椭圆上的任意一点,则的取值范围是  。

正确答案

解析

∵椭圆,∴a=,b=2=c。

设k==

则当|PF1|=|PF2|时,k取得最小值0;

当|PF2|=a+c=时,即时,k=取得最大值。

∴k的取值范围是

故答案为

知识点

圆的标准方程
1
题型:填空题
|
填空题 · 5 分

在圆上,与直线的距离最小值是             .

正确答案

.

解析

圆的半径是2,圆心的距离是,所以圆上,与直线的距离最小值是,所以应该填.

知识点

圆的标准方程
1
题型: 单选题
|
单选题 · 5 分

如图,F1,F2是双曲线C:(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点,若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为(  )

A

B

C2

D

正确答案

A

解析

∵|AB|:|BF2|:|AF2|=3:4:5,不妨令|AB|=3,|BF2|=4,|AF2|=5,

∵|AB|2+=

∴∠ABF2=90°,

又由双曲线的定义得:|BF1|﹣|BF2|=2a,|AF2|﹣|AF1|=2a,

∴|AF1|+3﹣4=5﹣|AF1|,

∴|AF1|=3。

∴|BF1|﹣|BF2|=3+3﹣4=2a,

∴a=1。

在Rt△BF1F2中,=+=62+42=52,又=4c2

∴4c2=52,

∴c=

∴双曲线的离心率e==

知识点

圆的标准方程
1
题型:简答题
|
简答题 · 10 分

如图,AB、CD是圆的两条平行弦,BE//AC,BE交CD于E、交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2。

(1)求AC的长;

(2)试比较BE与EF的长度关系。

正确答案

(1)     (2)

解析

(1)

                          ………5分

(2),而

。…………10分

知识点

圆的标准方程
1
题型: 单选题
|
单选题 · 5 分

设地球半径为R,若甲地位于北纬45°东经120°,乙地位于南纬度75°东经120°,则甲、乙两地球面距离为(  )

A R

B R

CR

D     R

正确答案

D

解析

解:由于甲、乙两地都在东经120°,就是都在同一个大圆上,

它们的纬度差是:120°,就是大圆周的

则甲、乙两地球面距离为:

知识点

圆的标准方程
1
题型:简答题
|
简答题 · 10 分

在极坐标系中,圆C的方程为,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线的参数方程为为参数)。

(1)若直线与圆相切,求实数的值;

(2)若直线过点,求直线被圆截得的弦长。

正确答案

见解析。

解析

(1)易求得直线,圆

依题意,有,解得.   

(2)因为直线过点,所以,可得圆,所以圆心 到直线的距离为

故弦长为.

知识点

圆的标准方程
1
题型:简答题
|
简答题 · 10 分

在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线的参数方程为

 (t为参数),曲线的方程为=12,定点A(6,0),点P是曲线

上的动点,Q为AP的中点。

(1)求点Q的轨迹的直角坐标方程;

(2)直线与直线交于A,B两点,若,求实数a的取值范围

正确答案

见解析

解析

(1)由题意知,曲线的直角坐标方程为

设P(),Q(x,y)由中点坐标公式得代入中,得点Q的轨迹的直角坐标方程

(2)直线l的普通方程y=ax,由题意得:,解得

知识点

圆的标准方程
下一知识点 : 圆锥曲线与方程
百度题库 > 高考 > 文科数学 > 直线和圆的方程

扫码查看完整答案与解析

  • 上一题
  • 1/15
  • 下一题