- 中和热
- 共997题
甲醇是一种可再生能源,具有广泛的开发和应用前景。
(1)工业上一般采用下列两种反应合成甲醇:
反应Ⅰ: CO(g) + 2H2(g) CH3OH(g) ΔH1
反应Ⅱ: CO2(g) + 3H2(g) CH3OH(g) + H2O(g) ΔH2
①下表所列数据是反应Ⅰ在不同温度下的化学平衡常数(K)。
由表中数据判断ΔH1 0 (填“>”、“=”或“<”)。
②某温度下,将2 mol CO和6 mol H2充入2L的密闭容器中,充分反应,达到平衡后,测得c(CO)= 0.2 mol/L,则CO的转化率为 ,此时的温度为 (从上表中选择)。
(2)已知在常温常压下:
① 2CH3OH(l) + 3O2(g) = 2CO2(g) + 4H2O(l) ΔH1=-1451.6kJ/mol
② 2CO (g)+ O2(g) = 2CO2(g) ΔH2=-566.0kJ/mol
写出甲醇不完全燃烧生成一氧化碳和液态水的热化学方程式:
(3)某实验小组依据甲醇燃烧的反应原理,设计如图所示的电池装置:
①该电池的能量转化形式为 。
②该电池正极的电极反应为 。
③工作一段时间后,测得溶液的pH减小,则该电池总反应的化学方程式为 。
正确答案
(1)①<(2分) ②80%(2分) 250℃(2分)
(2)CH3OH(l) + O2(g) = CO(g) + 2H2O(l) ΔH1=-442.8kJ/mol(3分)
⑶①化学能转化为电能(2分)
②O2 + 2H2O +4e- = 4OH-(2分)
③2CH3OH + 3O2 + 4OH-= 2CO32-+ 6H2O(3分
试题分析:(1)①由题给数据分析,随着温度的升高,平衡常数减小,平衡向逆向移动,升温平衡向吸热方向移动,该反应正向为放热反应,ΔH1<0;②利用三行式进行计算。按反应II充分反应,达到平衡后,测得c(CO)=0.2mol/L,设转化的CO的物质的量浓度为x,
CO(g)+2H2 (g)CH3OH (g)
起始量(mol/L) 1 3 0
变化量(mol/L) x 2x x
平衡量(mol/L) 0.2 3-2x x
分析知x=0.8mol/L
平衡时各物质的浓度:c(CO)=0.2mol/L,c(H2)=1.4mol/L,c(CH3OH)=0.8mol/L;一氧化碳的转化率=0.8/1×100%=80%,K=0.8/0.2×1.42=2.041,由表格可知温度为250℃;(2)由盖斯定律,①-②得:2CH3OH(l)+2O2(g)═2CO(g)+4H2O(l),△H=-885.6 kJ∕mol,热化学反应方程式为:CH3OH(l)+O2(g)═CO(g)+2H2O(l)△H=-442.8 kJ∕mol;(3)①分析知此装置为甲醇燃料电池,该电池的能量转化形式为化学能转化为电能;②正极上氧气得电子和水反应生成氢氧根,所以其电极反应式为O2+2H2O+4e-═4OH-;③负极上甲醇失电子和氢氧根反应生成碳酸根和水,正极上氧气得电子和水反应生成氢氧根,所以其电池反应式为:2CH3OH+3O2+4KOH═2K2CO3+6H2O。
(16分)
用CaSO4代替O2与燃料CO反应,既可以提高燃烧效率,又能得到高纯CO2,是一种高效、清洁、经济的新型燃烧技术,反应①为主反应,反应②和③为副反应。
①1/4CaSO4(s)+CO(g)1/4CaS(s)+CO2(g) △H1=-47.3kJ/mol
②CaSO4(s)+CO(g)CaO(s)+ CO2(g)+ SO2(g) △H2=+210.5kJ/mol
③CO(g)1/2C(s)+1/2CO2(g) △H3=-86.2kJ/mol
(1)反应2 CaSO4(s)+7CO(g)CaS(s)+CaO(s)+C(s)+6CO2(g)+SO2(g)的△H= (用△H1△H2△H3表示)。
(2)反应①~③的平衡常数的对数lgK随反应温度T的变化曲线见图18.结合各反应的△H,归纳lgK~T曲线变化规律:
a)
b)
(3)向盛有CaSO4的真空恒容容器中充入CO,反应①于900 ºC达到平衡,c平衡(CO)=8.0×10-5mol·L-1,计算CO的转化率(忽略副反应,结果保留2位有效数字)。
(4)为减少副产物,获得更纯净的CO2,可在初始燃料中适量加入 。
(5)以反应①中生成的CaS为原料,在一定条件下经原子利用率100%的高温反应,可再生成CaSO4,该反应的化学方程式为 ;在一定条件下CO2可与对二甲苯反应,在其苯环上引入一个羧基,产物的结构简式为 。
正确答案
(1)4△H1+△H2+2△H3;
(2)a)、放热反应的lgK随温度升高而下降; b)、放出或吸收热量越大的反应,其lgK受温度影响越大;
(3)99%
(4)CO2
(5)CaS+2O2CaSO4,
试题分析:(1)根据盖斯定律可得2 CaSO4(s)+7CO(g)CaS(s)+CaO(s)+C(s)+6CO2(g)+SO2(g)的△H=①×4+②+③×2=4△H1+△H2+2△H3;
(2)由图像及反应的△H可知,a)、反应①③是放热反应,随温度升高,lgK降低;反应②是吸热反应,随温度升高,lgK增大;b)、从图像上看出反应②、③的曲线较陡,说明放出或吸收热量越大的反应,其lgK受温度影响越大;
(3)由图可知,反应①于900 ºC的lgK=2,则K=100, c平衡(CO)=8.0×10-5mol·L-1,平衡时c平衡(CO2)=100×8.0×10-5mol·L-1=8.0×10-3mol·L-1,根据反应1/4CaSO4(s)+CO(g)1/4CaS(s)+CO2(g)可知,消耗CO的浓度是8.0×10-3mol·L-1,则开始时c(CO)=8.0×10-5mol·L-1+8.0×10-3mol·L-1=8.08×10-3mol·L-1,所以CO的转化率为8.0×10-3mol·L-1/8.08×10-3mol·L-1×100%=99%,;
(4)根据方程式可知,二氧化碳中含有气体杂质SO2,可在CO中加入适量的CO2,抑制二氧化硫的产生;
(5)CaS转化为CaSO4,从元素守恒的角度分析,CaS与氧气发生化合反应,原子的利用率100%,生成CaSO4,化学方程式为CaS+2O2CaSO4,CO2与对二甲苯发生反应,所得产物中含有羧基,因为苯环的氢原子只有1种,所以产物的结构简式只有1种为
。
研究CO2的利用对促进低碳社会的构建具有重要意义。
(1)将CO2与焦炭作用生成CO,CO可用于炼铁等。
已知:Fe2O3(s) + 3C(石墨) =" 2Fe(s)" + 3CO(g) △H 1 =" +489.0" kJ·mol-1
C(石墨) +CO2(g) = 2CO(g) △H 2 =" +172.5" kJ·mol-1
则CO还原Fe2O3(s)的热化学方程式为 。
(2)二氧化碳合成甲醇是碳减排的新方向,将CO2转化为甲醇的热化学方程式
CO2(g) +3H2(g)CH3OH(g) +H2O(g) △H
①该反应的平衡常数表达式为K= 。
②取一定体积CO2和H2的混合气体(物质的量之比为1∶3),加入恒容密闭容器中,发生上述反应。反应过程中测得甲醇的体积分数φ(CH3OH)与反应温度T的关系如图A所示,则该反应的ΔH 0(填“>”、“<”或“=”)。
③在两种不同条件下发生反应,测得CH3OH的物质的量随时间变化如图B所示,曲线I、Ⅱ对应的平衡常数大小关系为KⅠ KⅡ(填“>” 或“<”)。
(3)以CO2为原料还可以合成多种物质。①工业上尿素[CO(NH2)2]由CO2和NH3在一定条件下合成,其反应方程式为 。当氨碳比=3,达平衡时CO2的转化率为60%,则NH3的平衡转化率为 。
②用硫酸溶液作电解质进行电解,CO2在电极上可转化为甲烷,该电极反应的方程式为 。
正确答案
(1)Fe2O3(s)+3CO(g) = 2Fe(s)+3CO2(g) △H = —28.5 kJ·mol-1(3分)(方程式、状态正确给1分,△H符号、数据、单位正确给2分)
(2)① (2分) ②<(2分) ③>(2分)
(3)①2NH3+CO2CO(NH2)2+H2O(2分)(配平错扣1分)
40%或0.4(2分)
②CO2+8e—+8H+=CH4+2H2O(3分)(配平错扣2分)
试题分析:(1)根据已知方程式和盖斯定律,所求方程式可由①-②×3得,△H = △H 1-3△H 2 =" +489.0" kJ·mol-1-3×172.5 kJ·mol-1 =—28.5 kJ·mol-1 ,所以CO还原氧化铁的热化学方程式为:Fe2O3(s)+3CO(g) = 2Fe(s)+3CO2(g) △H = —28.5 kJ·mol-1 。
(2)①根据给出的热化学方程式可得出该反应的平衡常数表达式为:K= ,
②图A中生成物甲醇的体积分数随着温度升高呈现出先增大后减小的变化,可以分析为达到最高点之前反应并未达到平衡,随温度升高反应速率加快,甲醇含量不断增大;当达到一定值时,反应达到平衡,此时再升高温度平衡发生移动,甲醇含量下降可以看出平衡逆向移动,所以该反应正反应为放热反应,ΔH<0。
③图B中不同条件下反应达到平衡时得到的甲醇的物质的量I>Ⅱ,所以I条件下的反应进行程度更大,所以KⅠ>KⅡ 。
(3)①工业用CO2和NH3在一定条件下合成尿素,该反应方程式可以由C:N比进行配平,所以方程式为: 2NH3+CO2CO(NH2)2+H2O;根据方程式中的系数可知,反应的n(NH3)=2n(CO2),而总的n(NH3)=3n(CO2),所以假设的CO2有1mol,则有n(NH3)=3n(CO2)=3mol,反应的n(NH3)=2×1×0.6 =1.2mol所以氨气的平衡转化率为40%。
②在酸性电介质中发生电解反应,考虑氢离子参加反应,CO2在电极上得电子被还原为甲烷,有水生成,所以电极反应式为:CO2+8e—+8H+=CH4+2H2O。
二甲醚(CH3OCH3)是无色气体,可作为一种新型能源,由合成气(组成为H2、CO、和少量CO2)直接制备二甲醚,其中主要过程包括以下四个反应(均为可逆反应):
①CO(g)+ 2H2(g) = CH3OH(g) △H1=—90.1 kJ·mol-1
②CO2(g)+ 3H2(g) = CH3OH(g)+H2O(g) △H2=—49.0 kJ·mol-1
水煤气变换反应③CO(g) + H2O (g)=CO2(g)+H2(g) △H3=—41.1 kJ·mol-1
二甲醚合成反应④2CH3OH(g)=CH3OCH3(g)+H2O(g) △H4=—24.5 kJ·mol-1
(1)由H2和CO直接制备二甲醚(另一产物为水蒸气)的热化学方程式为 。
(2)一定温度下,在恒容密闭容器中进行反应①,下列描述能说明反应到达平衡状态的是 。
a.容器中气体平均相对分子质量保持不变
b.容器中气体密度保持不变
c.CH3OH(g)浓度保持不变
d.CH3OH(g)的消耗速率等于H2 (g)的消耗速率
(3)一定温度下,将8mol CH3OH(g)充入5L密闭容器中进行反应④,一段时间后到达平衡状态,反应过程中共放出49kJ热量,则CH3OH(g)的平衡转化率为 ,该温度下,平衡常数K= ;该温度下,向容器中再充入2mol CH3OH(g),对再次达到的平衡状态的判断正确的是 。
a.CH3OH(g)的平衡转化率减小
b.CH3OCH3 (g)的体积分数增大
c.H2O(g)浓度为0.5mol·L-1
d.容器中的压强变为原来的1.25倍
(4)二甲醚—氧气燃料电池具有启动快,效率高等优点,其能量密度高于甲醇燃料电池,若电解质为酸性,二甲醚—氧气燃料电池的负极反应为 ;消耗2.8L(标准状况)氧气时,理论上流经外电路的电子 mol
正确答案
(1)2CO(g)+4H2(g)=CH3OCH3(g)+H2O(g)△=-204.7 kJ/mol,
(2)ac (3)50% 0.25 cd (4)CH3OCH3+3H2O-12e-=2CO2+12H+, 0.5
试题分析:由已知的方程式①×2+④得2CO(g)+4H2(g)=CH3OCH3(g)+H2O(g)△=-204.7 kJ/mol,
(2)由反应①可知ac说明反应达平衡状态。
(3)根据反应2CH3OH(g)=CH3OCH3(g)+H2O(g) △H4=—24.5 kJ·mol-1当放热为49k J时消耗甲醇
4mol 4mol 2mol 2mol
结合平衡常数k=c(CH3OCH3)c(H2O)/
C2(CH3OH)得0.25,当再冲入2mol甲醇时化学平衡不会移动且平衡常数不变,确定C对,压强为原来的1.25倍。
(4)电解质为酸性电池的负极反应式为CH3OCH3+3H2O-12e-=2CO2+12H+,正极反应式为
4H++O2+4e-=4H2O,消耗2.8L氧气时转移电子为0.5mol。
CO2和CO是工业排放的对环境产生影响的废气。
(1)以CO2与NH3为原料合成化肥尿素的主要反应如下:
①2NH3(g)+CO2(g)=NH2CO2NH4(s);ΔH=-159.47 kJ·mol-1
②NH2CO2NH4(s)=CO(NH2)2(s)+H2O(g);ΔH=a kJ·mol-1
③2NH3(g)+CO2(g)=CO(NH2)2(s)+H2O(g);ΔH=-86.98 kJ·mol-1
则a为 。
(2)科学家们提出用工业废气中的CO2制取甲醇:CO2+3H2CH3OH+H2O。制得的CH3OH可用作燃料电池的燃料。
①在KOH介质中,负极的电极反应式为_________________________________。
②作介质的KOH可以用电解K2SO4溶液的方法制得。则KOH在_______出口得到,阳极的电极反应式是:_____________________________________。
(3)利用CO与H2反应可合成CH3OCH3。
已知:3H2(g) + 3CO(g) CH3OCH3(g) + CO2(g),ΔH=-247kJ/mol
在一定条件下的密闭容器中,该反应达到平衡,要提高CO的转化率,可以采取的措施是 .
(4)CH3OCH3也可由CH3OH合成。已知反应2CH3OH(g) CH3OCH3(g) + H2O(g),在某温度下,在1L密闭容器中加入CH3OH ,反应到10分钟时达到平衡,此时测得各组分的浓度如下:
①0-10 min内反应速率v(CH3OH) = 。
②该温度下的平衡常数为 。
③若平衡后,再向容器中再加入0.01mol CH3OH和0.2mol CH3OCH3,此时正、逆反应速率的大小:
v正 v逆 (填“>”、“<”或“=”)。
正确答案
(1)+72.49kJ.mol-1 (2分)
(2)①CH3OH -6e-+8OH-=CO32-+6H2O(2分)
②D (2分)4OH- + 4e- = 2H2O + O2↑ (2分)
(3)AE (2分)
(4)①0.04 mol·L-1·min-1(2分)② 400(2分) ③ > (2)
试题分析:(1)依据热化学方程式和盖斯定律①+②=③,得到-159.47KJ/mol+a=-86.98KJ/mol,a=+72.49KJ/mol;
(2)①甲醇作燃料制成的燃料电池生成的CO2被碱溶液吸收生成K2CO3,总反应式为:2CH3OH+4KOH+3O2=2K2CO3+6H2O,所以甲醇在负极失去电子,负极的电极反应式为:2CH3OH-12e- +16OH- =2CO32- +12H2O,正极则为:3O2+12e-+6H2O=12OH-
②电解K2SO4溶液实质就是电解水,阳极水电离的OH-失去电子被氧化,阳极产生大量H+,SO42-通过阴离子交换膜到达阳极,从A口出得到硫酸,阳极电极反应式为:4OH- + 4e- = 2H2O + O2↑;而阴极水电离得H+得到电子被还原,所以会有大量OH-生成,K+通过阳离子交换膜进入阴极,在D口出得到KOH,阴极反应式为:4H++ 4e- =2H2↑。
(3)由反应可知正反应为放热、前后气体系数减少的反应,所以增大压强、降低温度有利于正反应提高CO的转化率,所以A可行;加入催化剂只能加快反应速率,不能改变平衡,B不可行;体积不变充入氦气不改变各参加反应气体的浓度,不会改变平衡,因此C项不能提高CO转化率;增加CO的浓度能使平衡正向移动,但是CO的转化率反而降低;E项分离出生成物二甲醚,可以使反应正向移动,所以能提高CO的转化率,所以E可行;故选AE。
(4)根据表中数据有:2CH3OH(g) CH3OCH3(g) + H2O(g)
初始浓度(mol/L): 0.41 0 0
转化浓度(mol/L): 0.4 0.2 0.2
平衡浓度(mol/L): 0.01 0.2 0.2
所以①0-10 min内反应速率v(CH3OH) =0.4 mol/L÷10min=0.04 mol·L-1·min-1
②该温度下的平衡常数K=0.2×0.2÷0.012 =400
③因为此平衡时,容器中有0.01mol CH3OH和0.2mol CH3OCH3 、0.2mol H2O,若恒温恒容下再向容器中再加入同样的0.01mol CH3OH和0.2mol CH3OCH3、0.2mol H2O,则达到等效平衡,平衡不移动。但是只加入0.01mol CH3OH和0.2mol CH3OCH3 则不能达到等效平衡,平衡向正反应方向移动,所以此时v正>v逆 。
扫码查看完整答案与解析