- 绝对值三角不等式
- 共1644题
已知函数f(x)=x2﹣1,g(x)=a|x﹣1|.
(1)若关于x的方程|f(x)|=g(x)只有一个实数解,求实数a的取值范围;
(2)若当x∈R时,不等式f(x)≥g(x)恒成立,求实数a的取值范围;
(3)求函数h(x)=|f(x)|+g(x)在区间[﹣2,2]上的最大值(直接写出结果,不需给出演算步骤).
正确答案
解答:解:(1)方程|f(x)|=g(x),即|x2﹣1|=a|x﹣1|,
变形得|x﹣1|(|x+1|﹣a)=0,
显然,x=1已是该方程的根,
从而欲原方程只有一解,即要求方程|x+1|=a,
有且仅有一个等于1的解或无解,
结合图形得a<0.
(2)不等式f(x)≥g(x)对x∈R恒成立,即(x2﹣1)≥a|x﹣1|(*)对x∈R恒成立,
①当x=1时,(*)显然成立,此时a∈R;
②当x≠1时,(*)可变形为,令
因为当x>1时,φ(x)>2,当x<1时,φ(x)>﹣2,
所以φ(x)>﹣2,故此时a≤﹣2.
综合①②,得所求实数a的取值范围是a≤﹣2.
(3)因为h(x)=|f(x)|+g(x)=|x2﹣1|+a|x﹣1|=
当时,结合图形可知h(x)在[﹣2,1]上递减,在[1,2]上递增,
且h(﹣2)=3a+3,h(2)=a+3,
经比较,此时h(x)在[﹣2,2]上的最大值为3a+3.
当时,
结合图形可知h(x)在[﹣2,﹣1],上递减,
在,[1,2]上递增,且h(﹣2)=3a+3,h(2)=a+3,
,
经比较,知此时h(x)在[﹣2,2]上的最大值为3a+3.
当时,
结合图形可知h(x)在[﹣2,﹣1]14,15上递减, 在
,[1,2]上递增,且h(﹣2)=3a+3,h(2)=a+3,
,
经比较,知此时h(x)在[﹣2,2]上的最大值为a+3.
当时,
结合图形可知h(x)在,
上递减, 在
,
上递增,
且h(﹣2)=3a+3<0,h(2)=a+3≥0,
经比较,知此时h(x)在[﹣2,2]上的最大值为a+3.
当时,结合图形可知h(x)在[﹣2,1]上递减,在[1,2]上递增,
故此时h(x)在[﹣2,2]上的最大值为h(1)=0.
综上所述,当a≥0时,h(x)在[﹣2,2]上的最大值为3a+3;
当﹣3≤a<0时,h(x)在[﹣2,2]上的最大值为a+3;
当a<﹣3时,h(x)在[﹣2,2]上的最大值为0.
已知关于x的不等式|x-3|+|x-4|<a.
(1)当a=2时,解上述不等式;
(2)如果关于x的不等式|x-3|+|x-4|<a的解集为空集,求实数a的取值范围.
正确答案
(1)原不等式|x-3|+|x-4|<2
当x<3时,原不等式化为7-2x<2,解得x>,∴
<x<3
当3≤x≤4时,原不等式化为1<2,∴3≤x≤4
当x>4时,原不等式化为2x-7<2,解得x<,∴4<x<
综上,原不等式解集为{x|<x<
};(5分)
(2)法一、作出y=|x-3|+|x-4|与y=a的图象,
若使|x-3|+|x-4|<a解集为空集只须y=|x-3|+|x-4|图象在y=a的图象的上方,
或y=a与y=1重合,∴a≤1
所以,a的范围为(-∞,1],(10分)
法二、:y=|x-3|+|x-4|=
当x≥4时,y≥1
当3≤x<4时,y=1
当x<3时,y>1
综上y≥1,原问题等价为a≤[|x-3|+|x-4|]min∴a≤1(10分)
法三、:∵|x-3|+|x-4|≥|x-3-x+4|=1,
当且仅当(x-3)(x-4)≤0时,上式取等号
∴a≤1.
若实数x、y、m满足|x﹣m|<|y﹣m|,则称x比y接近m.
(1)若2x﹣1比3接近0,求x的取值范围;
(2)对任意两个不相等的正数a、b,证明:a2b+ab2比a3+b3接近.
正确答案
(1)解:若2x﹣1比3接近0,则有|2x﹣1﹣0|<|3﹣0|,
∴|2x﹣1|<3,即﹣3<2x﹣1<3,
解得﹣1<x<2,故x的取值范围为 (﹣1,2).
(2)证明:对任意两个不相等的正数a、b,,
有a2b+ab2 >,
,即
.
又因为|a2b+ab2 ﹣|﹣|
|
=ab(a+b)﹣﹣(a3+b3)+
=ab(a+b)﹣(a+b)(a2+b2﹣ab)
=﹣(a+b)(a﹣b)2<0,
所以,|a2b+ab2 ﹣|<|
|,
即a2b+ab2比a3+b3接近.
已知f(x)=|x|+|x+1|,若对于a∈R,不等式(|a+1|+|a-1|)f(x)≥|4a|恒成立,求实数x的取值范围。
正确答案
解:∵|a+1|+|a-1|>0,
对于,不等式(|a+1|+|a-1|)f(x)≥|4a|恒成立
恒成立,
只需f(x)不小于的最大值,
∵|a+1|+|a-1|≥|(a+1)+(a-1)|=|2a|>0,
当且仅当(a+1)(a-1)≥0,即|a|≥1时取等号,
故,即
的最大值为2,
∴根据题意有|x|+|x+1|≥2,①
当x<-1时,①可化为-x-x-1≥2,解得;
当-1≤x<0时,①可化为-x+x+1≥2,解得x∈;
当x≥0时,①可化为x+x+1≥2,解得;
综上,或
。
(选做题)
设函数f(x)=|2-2x|+|x+3|.
(1)解不等式f(x)>6
(2)若关于x的不等式f(x)≤|2a-1|的解集不是空集,试求实数a的取值范围。
正确答案
解:(1)(- ∞,-1)∪(,+∞)
(2)
扫码查看完整答案与解析