热门试卷

X 查看更多试卷
1 简答题 · 12 分

为了调查我市在校中学生参加体育运动的情况, 从中随机抽取了16名男同学和14名女同学,调查发现,男、女同学中分别有12人和6人喜爱运动,其余不喜爱。

(1)根据以上数据完成以下2×2列联表:

(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.010的前提下认为性别与喜爱运动有关?

(3)将以上统计结果中的频率视作概率, 从我市中学生中随机抽取3人,若其中喜爱运动的人数为,求的分布列和均值。

1 简答题 · 12 分

19. 有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.

已知在全部105人中抽到随机抽取1人为优秀的概率为.

(1)请完成上面的列联表;

(2)根据列联表的数据,若按的可靠性要求,能否认为“成绩与班级有关系” ;

(3)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率.

参考公式:         

参考数据:

1 简答题 · 14 分

20.某校高一年级共有学生1000名,其中走读生750名,住宿生250名,现从该年级采用分层抽样的方法从该年级抽取n名学生进行问卷调查。根据问卷取得了这n名同学每天晚上有效学习时间(单位:分钟)的数据,按照以下区间分为八组:[0,30),[30,60),[60,90),[90,120),[120,l50),[150,180),[180,210),[210,240),得到频率分布直方图如下图。已知抽取的学生中每天晚上有效学习时间少于60分钟的人数为5人。

(1)求n的值并求有效学习时间在[90,120)内的频率;

(2)如果把“学生晚上有效时间达到两小时”作为是

否充分利用时间的标准,对抽取的n名学生,请

补完整下列2×2列联表并判断是否有95%的把握

认为学生利用时间是否充分与走读、住宿有关?

(3)若在第①组、第②组、第⑦组、第⑧组中共抽出3

人调查影响有效利用时间的原因,记抽到“有效学

习时间少于60分钟”的学生人数为,求的分布列及数学期望.

参考公式:K2=

参考列表:

1 简答题 · 12 分

22.为了考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校的高中生中随机地抽取了300名学生进行调查,得到如下列联表:

由表中数据计算,判断高中生的性别与是否喜欢数学课程之间是否有关系,并说明理由。

1 单选题 · 5 分

5.某人研究中学生的性别与阅读量的关系,随机抽查500名中学生,得到统计数据如下表:

附表:

参照附表,可得到的结论是(  ).

A在犯错误的概率不超过0.1%的前提下,认为“阅读量丰富与性别有关”

B在犯错误的概率不超过0.1%的前提下,认为“阅读量丰富与性别无关”

C有99%以上的把握认为“阅读量丰富与性别有关”

D有99%以上的把握认为“阅读量丰富与性别无关”

1 单选题 · 5 分

7.某研究小组随机在高二学生中抽查了105名学生,以研究他们的数学成绩与物理成绩的联系,得到如图2×2列联表:

则数学成绩与物理成绩之间有关系的可能性为(  ).

A0.1%

B99.9%

C97.5%

D0.25%

1 简答题 · 12 分


18.2016年1月1日起全国统一实施全面两孩政策。为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如下表:

(Ⅰ)以这100个人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中随机抽取3位,记其中生二胎的人数为,求随机变量的分布列和数学期望;


(Ⅱ)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由.

参考数据:

(参考公式:,其中

1 简答题 · 12 分

18.某班为了调查同学们周末的运动时间,随机对该班级50名同学进行了不记名的问卷调查,得到了如下表所示的统计结果:

(1)根据统计结果,能否在犯错误概率不超过0.05的前提下,认为该班同学周末的运动时间与性别有关?

(2)用分层抽样的方法,从男生中抽取6名同学,再从这6名同学中随机抽取2名同学,求这两名同学中恰有一位同学运动时间超过2小时的概率.附:,其中

1 简答题 · 12 分

某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.

19.若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;

20.学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到右表中数据,根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?

21.在20题中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50的学生人数为,求的分布列和数学期望.

附:

1 简答题 · 12 分

某种机器在一个工作班的8小时内,需要工作人员操控累计2个小时才能正常进行,当机器需用操控而无人操控时,机器自动暂停运行。每台机器在某一时刻是否用人操控彼此之间相互独立

21.若在一个工作班内有4台相同机器,求在同一时刻需用人操控的平均台数;

22.若要求一人操控的所有机器正常运行的概率控制在不低于的水平,且该人待工而闲的概率小于.试探讨:一人操控台、台、台机器这三种工作方案中,哪种方案符合要求,并说明理由.

下一知识点 : 回归分析
百度题库 > 高考 > 理科数学 > 独立性检验的应用
  • 上一题
  • 1/10
  • 下一题