热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

如图,在平面直角坐标系中,已知是椭上的一点,从原点向圆作两条切线,分别交椭圆于点

24.若点在第一象限,且直线互相垂直,求圆的方程;

25.若直线的斜率存在,并记为,求的值;

第(1)小题正确答案及相关解析

正确答案

(1)

解析

(1)由圆的方程知圆的半径,因为直线互相垂直,且和圆相切,所以,即   ①又点在椭圆上,所以    ②

联立①②,解得,所以,所求圆的方程为

考查方向

本题主要考查椭圆和圆的性质、直线和圆的位置关系等知识,意在考查考生的计算能力及逻辑推理能力。

解题思路

先根据题中条件求出圆心的坐标,后即可得到圆的方程;

易错点

不知题中给出的直线是切线,且互相垂直如何使用导致不能得到关于圆心的方程;

第(2)小题正确答案及相关解析

正确答案

(2)

解析

(2)因为直线都与圆相切,所以,化简得,因为点在椭圆上,所以

,所以

考查方向

本题主要考查椭圆和圆的性质、直线和圆的位置关系等知识,意在考查考生的计算能力及逻辑推理能力。

解题思路

根据直线和圆相切得,化简得到,后消元即可得到答案。

易错点

不会化简得到

1
题型: 单选题
|
单选题 · 5 分

6.经过点(2,1),且渐近线与圆相切的双曲线的标准方程为

A

B

C

D

正确答案

A

解析

设渐近线方程为则根据题意得圆心

∴渐近线为

∴设双曲线方程为

考查方向

本题主要考察了双曲线的定义和方程,考察了双曲线的几何意义,考察了直线和圆的位置关系,难度系数不高,

解题思路

1)设渐近线方程(无法确定焦点位置)利用直线和圆的位置关系求渐近线

2)利用渐近线写出含参双曲线方程,带入坐标直接得出结果

易错点

本题易在双曲线焦点的判断

知识点

双曲线的几何性质双曲线的相关应用直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

已知曲线C的方程是(m>0,n>0),且曲线C过A(),B(,  )两点,O为坐标原点.

23.求曲线C的方程;

24.设M(x1,y1),N(x2,y2)是曲线C上两点,向量p=(x1y1),q=(x2y2),且p·q=0,若直线MN过(0,),求直线MN的斜率.

第(1)小题正确答案及相关解析

正确答案

见解析

解析

解:(1)由题可得:,解得

所以曲线方程为

考查方向

本题考察了曲线方程的求解,考察了直线与曲线的位置关系

解题思路

1)根据题意联立解方程求出曲线方程

2)写出直线方程,与曲线联立,得到韦达定理

3)根据p·q=0,得到x1,x2的关系

4)解方程得到结果

易错点

本题较简单,一般在计算出错和对p·q=0处理出错

第(2)小题正确答案及相关解析

正确答案

见解析

解析

解:

(2)设直线的方程为,代入椭圆方程为得:

=

考查方向

本题考察了曲线方程的求解,考察了直线与曲线的位置关系

解题思路

1)根据题意联立解方程求出曲线方程

2)写出直线方程,与曲线联立,得到韦达定理

3)根据p·q=0,得到x1,x2的关系

4)解方程得到结果

易错点

本题较简单,一般在计算出错和对p·q=0处理出错

1
题型: 单选题
|
单选题 · 5 分

7.已知双曲线的离心率为,则双曲线的渐近线方

程为

A

B

C

D

正确答案

C

解析

,所以渐近线的方程为,所以选C选项。

考查方向

本题主要考查了双曲线的离心率和渐近线方程。

解题思路

先由离心率算出b/a的值,再求出渐近线的方程。

易错点

本题记错渐近线方程 。

知识点

双曲线的几何性质直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

20. 如图,已知椭圆 ,离心率是椭圆上的任一点,从原点向圆作两条切线,分别交椭圆于点

(Ⅰ)若过点的直线与原点的距离为,求椭圆方程;

(Ⅱ)在(Ⅰ)的条件下,若直线的斜率存在,并记为.试问是否为定值?若是,求出该值;若不是,说明理由.

正确答案

(1);(2)为定值。

解析

试题分析:本题属于直线与圆锥曲线的问题,

(1)由已知条件构造方程组求解(2)用设而不求的方法来解决.

(Ⅰ)因为离心率,所以,而        所以,即   ①                                                           设经过点的直线方程为

因为直线与原点的距离为

所以,整理得:②                                          由①②得                                                                                        所以椭圆的方程为

(Ⅱ)解:因为直线, 与圆M相切,由直线和圆相切的条件: ,可得,                                                  平方整理,可得,
,                                                 所以是方程的两个不相等的实数根, ,因为点在椭圆C上,所以,即,所以为定值;

考查方向

本题考查了直线与圆锥曲线的问题.

解题思路

本题考查直线与圆锥曲线的问题,解题步骤如下:

由已知条件构造方程组求解。

用设而不求的方法来解决。

易错点

不会利用设而不求的思想来解答。

知识点

椭圆的几何性质椭圆的相关应用圆锥曲线的定点、定值问题直线、圆及圆锥曲线的交汇问题
百度题库 > 高考 > 文科数学 > 直线、圆及圆锥曲线的交汇问题

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题