• 孟德尔的豌豆杂交实验(二)
  • 共13438题
  • 孟德尔的豌豆杂交实验(二)
  • 共13438题

热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题

果蝇的体色灰身(A)对黑身(a)为显性,属常染色体遗传;体毛有直毛和分叉毛(基因用B、b表示),在一封闭饲养繁殖直毛果蝇的环境中,科研人员偶然发现一只分叉毛雄果蝇.科研人员为了研究分叉毛果蝇的遗传特性,做了以下实验:

(1)让这只分叉毛雄果蝇与直毛雌果蝇交配,结果F1全是直毛果蝇,说明显性性状是______

(2)再让F1直毛果蝇雌雄交配,如果F2中直毛和分叉毛果蝇数量比约为______,而且______,则该对基因位于X染色体上.

(3)现有一只纯合灰身分叉毛雌果蝇,若A基因所在的同源染色体在减数第一次分裂时不分离,产生的雌配子染色体数目为______,该种变化在光学显微镜下______(可见,不可见).

正确答案

解:(1)分叉毛雄果蝇与直毛雌果蝇交配,结果F1全是直毛果蝇,说明直毛是显性性状,分叉毛是隐性性状.

(2)若该对基因位于X染色体上,亲本基因型为XBXB、XbY,则F1直毛果蝇雌雄的基因型分别是XBXb、XBY,因此F2直毛和分叉毛的比例为=3:1,且后代中分叉毛都是雄果蝇.

(3)已知果蝇有4对同源染色体,若A基因所在的同源染色体在减数第一次分裂时不分离,产生的雌配子染色体数目为3或5,这种变异为染色体数目的变异,可以在光学显微镜下观察到.

故答案为:

(1)直毛

(2)3:1  分叉毛都是雄果蝇

(3)3或5  可见

解析

解:(1)分叉毛雄果蝇与直毛雌果蝇交配,结果F1全是直毛果蝇,说明直毛是显性性状,分叉毛是隐性性状.

(2)若该对基因位于X染色体上,亲本基因型为XBXB、XbY,则F1直毛果蝇雌雄的基因型分别是XBXb、XBY,因此F2直毛和分叉毛的比例为=3:1,且后代中分叉毛都是雄果蝇.

(3)已知果蝇有4对同源染色体,若A基因所在的同源染色体在减数第一次分裂时不分离,产生的雌配子染色体数目为3或5,这种变异为染色体数目的变异,可以在光学显微镜下观察到.

故答案为:

(1)直毛

(2)3:1  分叉毛都是雄果蝇

(3)3或5  可见

1
题型:简答题
|
简答题

玉米是重要的粮食作物,请回答下列有关玉米遗传变异的问题:

(1)玉米有早熟和晚熟两个品种,该性状的遗传涉及两对等位基因,分别用A、a,B、b表示.为探究玉米早熟和晚熟的遗传规律,科学家进行了杂交实验:

实验1:早熟×晚熟,Fl表现为早熟,F2表现为15早熟:1晚熟;

实验2:早熟×晚熟,Fl表现为早熟,F2表现为3早熟:1晚熟;

①实验1F1测交后代的表现型及比例为______.如果对F2中早熟品种测交,其后代表现型为1:1的个体占______

②实验2的亲本中,早熟品种的基因型为______,F2中早熟品种自交,后代中早熟与晚熟的比例为______

(2)假设决定玉米抗寒与不抗寒的基因在叶绿体DNA上,用抗寒晚熟与不抗寒早熟的纯合亲本杂交,要得到抗寒早熟个体,需用表现型为______的个体作母本,纯合的抗寒早熟个体最早出现在______代.

(3)玉米有黄粒品种,如果有一黄粒玉米变异株,籽粒变为白粒,经检查,体细胞缺少一对染色体,这属于______变异,将这一变异玉米和正常玉米杂交,得到的F1是淡黄粒.F1自交,则F2代中黄粒个体占______.如果让淡黄粒玉米与白粒玉米杂交,后代玉米的表现型及比例为______

正确答案

解:(1)①实验1F1的基因型为AaBb,测交后代的表现型及比例为早熟(AaBb、Aabb、aaBb):晚熟(aabb)=3:1.如果对F2中早熟品种(1AABB、2AABb、2AaBB、4AaBb、1AAbb、2Aabb、1aaBB、2aaBb)测交,其后代表现型为1:1的个体有Aabb和aaBb,占

②由于实验2中早熟×晚熟,F1表现为早熟,F2表现为3早熟:1晚熟.因此亲本早熟品种的基因型为AAbb或aaBB,晚熟品种的基因型为aabb,F1表现为早熟,其基因型为Aabb或aaBb.F2中早熟品种(AAbb、Aabb或aaBB、aaBb)自交,后代中早熟与晚熟的比例为():()=5:1.

(2)假设决定玉米抗寒与不抗寒的基因在叶绿体DNA上,用抗寒晚熟与不抗寒早熟的纯合亲本杂交,要得到抗寒早熟个体,需用表现型为抗寒晚熟的个体作母本,纯合的抗寒早熟个体最早出现在F2代.

(3)染色体变异包括结构变异和数目变异,现检查发现白粒玉米的体细胞缺少一对染色体,属于染色体数目的变异.将这一变异玉米和正常玉米杂交,得到的F1是淡黄粒,相当于杂合体.F1自交,则F2代中黄粒个体占.如果让淡黄粒玉米与白粒玉米杂交,后代玉米的表现型及比例为淡黄粒:白粒=1:1.

故答案为:

(1)①早熟:晚熟=3:1        ②AAbb或aaBB    5:1 

(2)抗寒晚熟   F2

(3)染色体数目            淡黄粒:白粒=1:1

解析

解:(1)①实验1F1的基因型为AaBb,测交后代的表现型及比例为早熟(AaBb、Aabb、aaBb):晚熟(aabb)=3:1.如果对F2中早熟品种(1AABB、2AABb、2AaBB、4AaBb、1AAbb、2Aabb、1aaBB、2aaBb)测交,其后代表现型为1:1的个体有Aabb和aaBb,占

②由于实验2中早熟×晚熟,F1表现为早熟,F2表现为3早熟:1晚熟.因此亲本早熟品种的基因型为AAbb或aaBB,晚熟品种的基因型为aabb,F1表现为早熟,其基因型为Aabb或aaBb.F2中早熟品种(AAbb、Aabb或aaBB、aaBb)自交,后代中早熟与晚熟的比例为():()=5:1.

(2)假设决定玉米抗寒与不抗寒的基因在叶绿体DNA上,用抗寒晚熟与不抗寒早熟的纯合亲本杂交,要得到抗寒早熟个体,需用表现型为抗寒晚熟的个体作母本,纯合的抗寒早熟个体最早出现在F2代.

(3)染色体变异包括结构变异和数目变异,现检查发现白粒玉米的体细胞缺少一对染色体,属于染色体数目的变异.将这一变异玉米和正常玉米杂交,得到的F1是淡黄粒,相当于杂合体.F1自交,则F2代中黄粒个体占.如果让淡黄粒玉米与白粒玉米杂交,后代玉米的表现型及比例为淡黄粒:白粒=1:1.

故答案为:

(1)①早熟:晚熟=3:1        ②AAbb或aaBB    5:1 

(2)抗寒晚熟   F2

(3)染色体数目            淡黄粒:白粒=1:1

1
题型:简答题
|
简答题

一种无毒蛇的体表花纹颜色由两对基因(D和d、H和h)控制,这两对基因按自由组合定律遗传,与性别无关.花纹颜色和基因型的对应关系如表所示.

现有下列三个杂交组合.请回答下列问题.

甲:野生型×白色,F1的表现型有野生型、橘红色、黑色、白色;

乙:橘红色×橘红色,F1的表现型有橘红色、白色;

丙:黑色×橘红色,F1全部都是野生型.

(1)甲组杂交方式在遗传学上称为______,属于假说-演绎法的______阶段,甲组杂交组合中,F1的四种表现型比例是______

(2)让乙组F1中橘红色无毒蛇与另一纯合黑色无毒蛇杂交,理论上杂交后代的表现型及比例是______

(3)让丙组F1中雌雄个体交配,后代中表现为橘红色的有120条,那么理论上表现为黑色的杂合子有______条.

(4)野生型与橘红色个体杂交,后代中白色个体所占比例最大的亲本基因型组合为______,后代中白色个体所占的最大比例为______

正确答案

解:(1)甲组中白色个体为双隐性纯合子,因此甲组杂交方式在遗传学上称为测交,是验证演绎推理的常用方法.由以上分析可知甲中野生型亲本的基因型为DdHh,白色的基因型是ddhh,其测交后代中四种表现型的比例为1:1:1:1.

(3)由以上分析可知,乙组中双亲的基因型都是Ddhh,则F1中橘红色个体的基因型及比例为DDhh、Ddhh,其中DDhh与黑色个体(ddHH)杂交,后代均为野生型,而Ddhh与黑色个体(ddHH)杂交,后代有为野生型(DdHh),为黑色(ddHh),所以杂交后代表现型及比例为野生型:黑色个体=(×+):(×+)=2:1.

(4)由以上分析可知,丙组中F1的基因型均为DdHh,其自交后代中橘红色个体(D_hh)所占的比例为,黑色个体所占的比例为,又已知后代中表现为橘红色的个体有120条,则后代中表现为黑色的个体也有120条.自交后代中黑色个体的基因型及比例为ddHH、ddHh,因此黑色的杂合子有120×=80条.

(5)若想使野生型个体与橘红色个体杂交产生白色个体(ddhh),则双亲中都必须含基因d、h,因此野生型个体的基因型为DdHh,橘红色个体的基因型为Ddhh,后代中白色个体所占的比例为×=

故答案是:

(1)测交 验证  1:1:1:1

(2)野生:黑色=2:1

(3)80

(4)DdHh×Ddhh  

解析

解:(1)甲组中白色个体为双隐性纯合子,因此甲组杂交方式在遗传学上称为测交,是验证演绎推理的常用方法.由以上分析可知甲中野生型亲本的基因型为DdHh,白色的基因型是ddhh,其测交后代中四种表现型的比例为1:1:1:1.

(3)由以上分析可知,乙组中双亲的基因型都是Ddhh,则F1中橘红色个体的基因型及比例为DDhh、Ddhh,其中DDhh与黑色个体(ddHH)杂交,后代均为野生型,而Ddhh与黑色个体(ddHH)杂交,后代有为野生型(DdHh),为黑色(ddHh),所以杂交后代表现型及比例为野生型:黑色个体=(×+):(×+)=2:1.

(4)由以上分析可知,丙组中F1的基因型均为DdHh,其自交后代中橘红色个体(D_hh)所占的比例为,黑色个体所占的比例为,又已知后代中表现为橘红色的个体有120条,则后代中表现为黑色的个体也有120条.自交后代中黑色个体的基因型及比例为ddHH、ddHh,因此黑色的杂合子有120×=80条.

(5)若想使野生型个体与橘红色个体杂交产生白色个体(ddhh),则双亲中都必须含基因d、h,因此野生型个体的基因型为DdHh,橘红色个体的基因型为Ddhh,后代中白色个体所占的比例为×=

故答案是:

(1)测交 验证  1:1:1:1

(2)野生:黑色=2:1

(3)80

(4)DdHh×Ddhh  

1
题型:简答题
|
简答题

玉米是雌雄同株异花的植物,开花时顶端为雄花,叶腋处为雌花,间行均匀种植可以进行同株异花受粉和异株异花受粉.玉米的宽叶(A)对窄叶(a)为显性,宽叶杂交种(Aa)玉米表现为高产,比纯合显性和隐性品种的产量分别高12%和20%;另外,玉米的有茸毛(D)对无茸毛(d)为显性,有茸毛玉米植株表面密生茸毛,具有显著的抗病能力,该显性基因纯合时植株幼苗期就不能存活;上述两对基因独立遗传,且其性状在幼苗期便能识别.请回答:

(1)要保证玉米进行杂交,则必须进行人工授粉,对母本进行的一系列处理是______

(2)将有茸毛玉米同株异花授粉,子代植株成熟时表现型及比例为______

(3)若将宽叶有茸毛玉米和窄叶有茸毛玉米进行异株异花传粉,子代只出现两种表现型,则:

①亲本的基因型是______

②F1成熟的群体中,D的基因频率是______

③若F1个体同株异花授粉产生F2,则理论上F2成熟植株中高产抗病个体所占的比例为______

正确答案

解:(1)因玉米是雌雄同株异花,故对母本不需去雄处理,但人工授粉时需防止外来花粉的干扰,故对母本的处理是雌花套袋--授粉--套袋.

(2)根据题意,有茸毛的基因型是Dd(DD幼苗期死亡),无茸毛基因型为dd,子代植株表现型及比例为有茸毛:无茸毛=2:1.

(3)①宽叶有茸毛玉米(A_Dd)和窄叶有茸毛玉米(aaDd)进行异株异花传粉,子代只出现两种表现型,故可确定亲本基因型分别是AADd和aaDd.

②由亲本可知F1个体基因型为AaDd、Aadd,所以D的基因频率是=

③由亲本可知F1个体基因型为AaDd、Aadd,F1个体同株异花授粉即自交理论上F2成熟植株的表现型有宽叶有茸毛(A_Dd)、窄叶有茸毛(aaDd)、宽叶无茸毛(A_dd)、窄叶无茸毛(aadd)四种表现型.由于DD植株幼苗期就不能存活,因此,F2成熟植株中高产抗病个体所占的比例为=

故答案为:

(1)雌花套袋-授粉-套袋

(2)有茸毛:无茸毛=2:1

(3)①AADd和aaDd      ②    ③

解析

解:(1)因玉米是雌雄同株异花,故对母本不需去雄处理,但人工授粉时需防止外来花粉的干扰,故对母本的处理是雌花套袋--授粉--套袋.

(2)根据题意,有茸毛的基因型是Dd(DD幼苗期死亡),无茸毛基因型为dd,子代植株表现型及比例为有茸毛:无茸毛=2:1.

(3)①宽叶有茸毛玉米(A_Dd)和窄叶有茸毛玉米(aaDd)进行异株异花传粉,子代只出现两种表现型,故可确定亲本基因型分别是AADd和aaDd.

②由亲本可知F1个体基因型为AaDd、Aadd,所以D的基因频率是=

③由亲本可知F1个体基因型为AaDd、Aadd,F1个体同株异花授粉即自交理论上F2成熟植株的表现型有宽叶有茸毛(A_Dd)、窄叶有茸毛(aaDd)、宽叶无茸毛(A_dd)、窄叶无茸毛(aadd)四种表现型.由于DD植株幼苗期就不能存活,因此,F2成熟植株中高产抗病个体所占的比例为=

故答案为:

(1)雌花套袋-授粉-套袋

(2)有茸毛:无茸毛=2:1

(3)①AADd和aaDd      ②    ③

1
题型:简答题
|
简答题

让高秆(D)抗锈病(T)与矮秆(d)不抗锈病(t)两种纯合子的小麦进行杂交.请回答有关问题:

(1)F1的基因型是______,F1经减数分裂可产生雌雄各______种配子,配子的基因组成及比例是______

(2)F2的表现型有______ 种,表现型及比例为______,F2的基因型有______种.F2中重组类型所占比列为______

(3)F2中我们需要的性状类型是矮杆抗锈病其基因型分别为:①______(纯合子)和②______(杂合子),若F2有320株,则①约有______株,②约有______株.

(4)在F2中,抗病与不抗病植株数目之比是_______;高秆与矮秆植株数目之比是______

正确答案

解:(1)让纯种高秆抗锈病DDTT与矮秆不抗锈病ddtt的两个品种杂交,F1全为高秆抗锈病DdTt,F1DdTt经减数分裂可产生雌雄各4种配子,其基因组成及比例为DT:Dt:Dt:dt=1:1:1:1.

(2)已知F1全为高秆抗锈病DdTt,则其自交产生的F2的表现型有2×2=4种,表现型及比例为高杆抗病:高杆不抗病:矮杆抗病:矮杆不抗病=9:3:3:1,F2的基因型有3×=9种.F2中重组类型所占比列为(3+3)÷16=

(3)F2中矮杆抗锈病其基因型分别为ddTT和②ddTt,若F2有320株,则①约有320×=20株,②约有320×=40株.

(4)已知F1全为高秆抗锈病DdTt,则在F2中,抗病与不抗病植株数目之比是3:1;高秆与矮秆植株数目之比是3:1.

故答案为:

(1)DdTt   4   DT:Dt:Dt:dt=1:1:1:1 

(2)4   高杆抗病:高杆不抗病:矮杆抗病:矮杆不抗病=9:3:3:1 

9      

(3)ddTT    ddTt  20   40

(4)3:1   3:1

解析

解:(1)让纯种高秆抗锈病DDTT与矮秆不抗锈病ddtt的两个品种杂交,F1全为高秆抗锈病DdTt,F1DdTt经减数分裂可产生雌雄各4种配子,其基因组成及比例为DT:Dt:Dt:dt=1:1:1:1.

(2)已知F1全为高秆抗锈病DdTt,则其自交产生的F2的表现型有2×2=4种,表现型及比例为高杆抗病:高杆不抗病:矮杆抗病:矮杆不抗病=9:3:3:1,F2的基因型有3×=9种.F2中重组类型所占比列为(3+3)÷16=

(3)F2中矮杆抗锈病其基因型分别为ddTT和②ddTt,若F2有320株,则①约有320×=20株,②约有320×=40株.

(4)已知F1全为高秆抗锈病DdTt,则在F2中,抗病与不抗病植株数目之比是3:1;高秆与矮秆植株数目之比是3:1.

故答案为:

(1)DdTt   4   DT:Dt:Dt:dt=1:1:1:1 

(2)4   高杆抗病:高杆不抗病:矮杆抗病:矮杆不抗病=9:3:3:1 

9      

(3)ddTT    ddTt  20   40

(4)3:1   3:1

1
题型:简答题
|
简答题

红细胞表面仅含A抗原的为A型血,仅含B抗原的为B型血,同时含A、B抗原的为AB型血,O型红细胞则不含这两种抗原,但通常含有可以形成A、B抗原的物质H(无H者也被视为O型血.上述抗原的形成由两对基因控制,这两对基因分别位于两对同源染色体上,其中基因H编码的酶能促使前体物质转变为物质H,但它的等位基因h则不能编码这种酶;基因IA编码的酶能促使H转变为A抗原,基因IB编码的酶能促使H转变为B抗原,但它们的等位基因i则不能编码这两种酶.A抗原、B抗原以及与它们的前体物质之间的关系如下图所示.请分析回答下列问题:

(1)图中X、Y分别是______

(2)基因i变成基因IA或IB的现象在遗传学上称为______,该现象发生的本质原因是DNA分子中发生了______

(3)表现为B型血的人,其基因型可能是______

(4)一个A型血男子与一个O型血女子结婚后生下的一个孩子为AB型血,且已知该夫妇所生孩子的血型只可能是AB型血,则孩子、父、母的基因型依次为__________________.该孩子与其基因型相同的配偶结婚,生育AB型、A型、B型、O型血的孩子的概率之比是______

(5)经过数年研究,已成功实现了B型血向O型血的转变.根据图中信息可推测,将B型血的______切去,可以实现B型血向O型血的转变.研究发现海南咖啡豆和大豆的α-半乳糖苷酶可以作为改造血型的工具酶.B型血的人常饮咖啡或吃大豆制品,血型会发生改变吗?为什么?______

(6)要大量获得α-半乳糖苷酶可以利用______生物学技术.

正确答案

解:(1)根据题意可知,基因H控制合成的酶H能促使前体物质转变为物质H,因此可以确定图中的Y为基因H,基因H可以控制酶H(X)的合成.

(2)基因i、IA和IB都是控制相对性状,属于等位基因,等位基因之间的相互转化为基因突变.发生的本质原因是DNA分子中发生了碱基对的增添、缺失或改变.

(3)表现为B型血的人,其基因型可能是HHIBIB、HHIBi、HhIBIB、HhIBi.

(4)由于该夫妇所生孩子的血型只可能是AB型血,因此O型血女子应含有IB基因,且该基因不能表达,其基因组成为hhIBIB;再根据该夫妇所生孩子的血型只可能是AB型血可推出,A型血男子的基因组成为HHIAIA,其孩子的基因组成为HhIAIB

该孩子与其基因型相同的配偶结婚,生育的孩子基因型、血型及其概率有HHIAIA(A型血,占)、HhIAIA(A型血,占)、hhIAIA(O型血,占)、HHIAIB(AB型血,占)、HhIAIB(AB型血,占)、hhIAIB(O型血,占)、HHIBIB(B型血,占)、HhIBIB(B型血,占)、hhIBIB(O型血,占),综合起来,AB型:A型:B型:O型=6:3:3:4.

(5)B抗原比前体物质多出的成分是⑦.a-半乳糖苷酶的化学本质是蛋白质,在高温条件下酶失活或在消化道中蛋白质将被蛋白酶水解.

(6)要大量获得α-半乳糖苷酶可以利用转基因工程、发酵工程、酶工程生物学技术.

故答案为:

(1)酶H、基因H

(2)基因突变    碱基对的增添、缺失或改变

(3)HHIBIB、HHIBi、HhIBIB、HhIBi

(4)HhIAIB   HHIAIA      hhIBIB   6:3:3:4

(5)⑦不会改变,因为高温使a-半乳糖苷酶失活(或a-半乳糖苷酶在消化道内被消化分解)

(6)转基因工程、发酵工程、酶工程

解析

解:(1)根据题意可知,基因H控制合成的酶H能促使前体物质转变为物质H,因此可以确定图中的Y为基因H,基因H可以控制酶H(X)的合成.

(2)基因i、IA和IB都是控制相对性状,属于等位基因,等位基因之间的相互转化为基因突变.发生的本质原因是DNA分子中发生了碱基对的增添、缺失或改变.

(3)表现为B型血的人,其基因型可能是HHIBIB、HHIBi、HhIBIB、HhIBi.

(4)由于该夫妇所生孩子的血型只可能是AB型血,因此O型血女子应含有IB基因,且该基因不能表达,其基因组成为hhIBIB;再根据该夫妇所生孩子的血型只可能是AB型血可推出,A型血男子的基因组成为HHIAIA,其孩子的基因组成为HhIAIB

该孩子与其基因型相同的配偶结婚,生育的孩子基因型、血型及其概率有HHIAIA(A型血,占)、HhIAIA(A型血,占)、hhIAIA(O型血,占)、HHIAIB(AB型血,占)、HhIAIB(AB型血,占)、hhIAIB(O型血,占)、HHIBIB(B型血,占)、HhIBIB(B型血,占)、hhIBIB(O型血,占),综合起来,AB型:A型:B型:O型=6:3:3:4.

(5)B抗原比前体物质多出的成分是⑦.a-半乳糖苷酶的化学本质是蛋白质,在高温条件下酶失活或在消化道中蛋白质将被蛋白酶水解.

(6)要大量获得α-半乳糖苷酶可以利用转基因工程、发酵工程、酶工程生物学技术.

故答案为:

(1)酶H、基因H

(2)基因突变    碱基对的增添、缺失或改变

(3)HHIBIB、HHIBi、HhIBIB、HhIBi

(4)HhIAIB   HHIAIA      hhIBIB   6:3:3:4

(5)⑦不会改变,因为高温使a-半乳糖苷酶失活(或a-半乳糖苷酶在消化道内被消化分解)

(6)转基因工程、发酵工程、酶工程

1
题型:简答题
|
简答题

鳟鱼的眼球颜色和体表颜色分别由两对等位基因A、a和B、b控制.现以红眼黄体鳟鱼和黑眼黑体鳟鱼为亲本,进行杂交实验,正交和反交结果相同.实验结果如图所示.请回答:

(1)在鳟鱼体表颜色性状中,显性性状是______

(2)已知这两对等位基因的遗传符合自由自合定律,理论上F2还应该出现______性状的个体,但实际并未出现,推测其原因可能是基因型为______的个体本应该表现出该性状,却表现出黑眼黑体的性状.

(3)为验证(2)中的推测,用亲本中的红眼黄体个体分别与F2中黑眼黑体个体杂交,统计每一个杂交组合的后代性状及比例.只要其中有一个杂交组合的后代______,则该推测成立.

(4)三倍体黑眼黄体鳟鱼具有优良的品质.科研人员以亲本中的黑眼黑体鳟鱼为父本,以亲本中的红眼黄体鳟鱼为母本,进行人工授精.用热休克法抑制受精后的次级卵母细胞排出极体,受精卵最终发育成三倍体黑眼黄体鳟鱼,其基因型是______.由于三倍体鳟鱼______,导致其高度不育,因此每批次鱼苗均需重新育种.

正确答案

解:(1)孟德尔把F1中显现出来的性状,叫做显性性状,所以在体表颜色性状中,黄体为显性性状.

(2)符合自由组合定律会出现性状重组,则还应该出现红眼黑体个体,但实际情况是这种双隐性aabb个体表现为黑眼黑体.

(3)亲本红眼黄体基因型为aaBB,黑眼黑体推测基因型为aabb或A-bb,若子代全部表现为红眼黄体即说明有aabb.

(4)父本为黑眼黑体鳟鱼,基因型是AAbb,配子应为Ab,母本为红眼黄体,热休克法法抑制次级卵母细胞分裂,即配子为aaBB,形成黑眼黄体,两对均是显性性状,所以三倍体鱼的基因型为AaaBBb.三倍体在减数分裂时联会紊乱,难以形成正常配子,所以高度不育.

故答案为:

(1)黄体(或黄色)   

(2)红眼黑体      aabb  

(3)全部为红眼黄体

(4)AaaBBb   不能进行正常的减数分裂,难以产生正常配子(或在减数分裂过程中,染色体联会紊乱,难以产生正常配子)

解析

解:(1)孟德尔把F1中显现出来的性状,叫做显性性状,所以在体表颜色性状中,黄体为显性性状.

(2)符合自由组合定律会出现性状重组,则还应该出现红眼黑体个体,但实际情况是这种双隐性aabb个体表现为黑眼黑体.

(3)亲本红眼黄体基因型为aaBB,黑眼黑体推测基因型为aabb或A-bb,若子代全部表现为红眼黄体即说明有aabb.

(4)父本为黑眼黑体鳟鱼,基因型是AAbb,配子应为Ab,母本为红眼黄体,热休克法法抑制次级卵母细胞分裂,即配子为aaBB,形成黑眼黄体,两对均是显性性状,所以三倍体鱼的基因型为AaaBBb.三倍体在减数分裂时联会紊乱,难以形成正常配子,所以高度不育.

故答案为:

(1)黄体(或黄色)   

(2)红眼黑体      aabb  

(3)全部为红眼黄体

(4)AaaBBb   不能进行正常的减数分裂,难以产生正常配子(或在减数分裂过程中,染色体联会紊乱,难以产生正常配子)

1
题型:简答题
|
简答题

已知果蝇灰身(A)对黑身(a)为显性,有眼(B)对无眼

(b)为显性,控制有眼、无眼的基因位于常染色体上.

(1)二倍体动物缺失一条染色体称为单体.果蝇中的Ⅳ号染色体只缺失一条可以存活,而且能够繁殖后代.现有一群正常染色体的有眼(纯合子、杂合子混在一起)和无眼果蝇,选取一部分果蝇受精卵,经处理、培养,筛选出了多只Ⅳ号染色体单体有眼果蝇.

①欲探究无眼基因是否位于Ⅳ号染色体上,应设计的交配方案为:______

②若无眼基因位于Ⅳ号染色体上,Ⅳ号染色体单体有眼果蝇减数分裂中偶然出现了一个BB型配子,最可能的原因是______

(2)若无眼基因位于Ⅳ号染色体上,为了研究A、a与B、b的位置关系,选取一对表现型为灰身有眼的正常染色体的雄果蝇和黑身无眼的正常染色体的雌果蝇进行杂交试验,F1代雌、雄果蝇中均出现四种表现型:灰身有眼、黑身有眼、灰身无眼、黑身无眼.

①如果F1代四种表现型比例为1:1:1:1,则基因A、a可能位于______染色体上;让F1代中灰身有眼果蝇相互交配,在F2代的所有灰身果蝇中纯合子所占的比例为______

②如果F1代四种表现型中,亲本类型偏多,重组类型偏少,则F1代同时出现上述四种表现型的原因最可能是______

正确答案

解:(1)①用多只Ⅳ号染色体单体有眼果蝇与正常染色体无眼果蝇交配或多只Ⅳ号染色体单体有眼果蝇相互交配,可探究无眼基因是否位于Ⅳ号染色体上.

②若无眼基因位于Ⅳ号染色体上,Ⅳ号染色体单体有眼果蝇减数分裂中偶然出现了一个BB型配子,由于单体中只有一条Ⅳ号染色体,在减数分裂过程中复制,所以在减数第二次分裂后期,着丝点分裂后,染色体移向了细胞的同一极,造成BB型配子的形成.

(2)①由于选取了一对表现型为灰身有眼的正常染色体的雄果蝇和黑身无眼的正常染色体的雌果蝇进行杂交试验,F1代灰身有眼:黑身有眼:灰身无眼:黑身无眼=1:1:1:1,说明基因A、a不可能位于Ⅳ号染色体上,而可能位于Ⅱ或Ⅲ号染色体上;F1代中灰身有眼果蝇的基因型为AaBb,它们之间相互交配,在F2代的所有灰身果蝇的基因型为A-B-和A-bb,其中纯合子所占的比例为=

②如果F1代四种表现型中,亲本类型偏多,重组类型偏少,则F1代同时出现上述四种表现型的原因最可能是灰身有眼果蝇减数第一次分裂的四分体时期,同源染色体的非姐妹染色单体之间发生交叉互换.

故答案为:

(1)①多只Ⅳ号染色体单体有眼果蝇与正常染色体无眼果蝇交配或多只Ⅳ号染色体单体有眼果蝇相互交配

②减数第二次分裂时染色体未分离

(2)①Ⅱ或Ⅲ

②灰身有眼果蝇减数分裂时,同源染色体的非姐妹染色单体之间发生交叉互换

解析

解:(1)①用多只Ⅳ号染色体单体有眼果蝇与正常染色体无眼果蝇交配或多只Ⅳ号染色体单体有眼果蝇相互交配,可探究无眼基因是否位于Ⅳ号染色体上.

②若无眼基因位于Ⅳ号染色体上,Ⅳ号染色体单体有眼果蝇减数分裂中偶然出现了一个BB型配子,由于单体中只有一条Ⅳ号染色体,在减数分裂过程中复制,所以在减数第二次分裂后期,着丝点分裂后,染色体移向了细胞的同一极,造成BB型配子的形成.

(2)①由于选取了一对表现型为灰身有眼的正常染色体的雄果蝇和黑身无眼的正常染色体的雌果蝇进行杂交试验,F1代灰身有眼:黑身有眼:灰身无眼:黑身无眼=1:1:1:1,说明基因A、a不可能位于Ⅳ号染色体上,而可能位于Ⅱ或Ⅲ号染色体上;F1代中灰身有眼果蝇的基因型为AaBb,它们之间相互交配,在F2代的所有灰身果蝇的基因型为A-B-和A-bb,其中纯合子所占的比例为=

②如果F1代四种表现型中,亲本类型偏多,重组类型偏少,则F1代同时出现上述四种表现型的原因最可能是灰身有眼果蝇减数第一次分裂的四分体时期,同源染色体的非姐妹染色单体之间发生交叉互换.

故答案为:

(1)①多只Ⅳ号染色体单体有眼果蝇与正常染色体无眼果蝇交配或多只Ⅳ号染色体单体有眼果蝇相互交配

②减数第二次分裂时染色体未分离

(2)①Ⅱ或Ⅲ

②灰身有眼果蝇减数分裂时,同源染色体的非姐妹染色单体之间发生交叉互换

1
题型:简答题
|
简答题

甲、乙为某种二倍体植物的2个植株,其体细胞中2对同源染色体(Ⅰ和Ⅱ)及相关基因分别见图甲和图乙,其中图乙表示变异情况.减数分裂时,染色体联会过程均不发生交叉互换.A和B是显性基因,A和a分别控制高茎和矮茎;B和b分别控制红花和白花.

(1)若甲植株进行自交产生的子代为N.N的矮茎红花个体中纯合子占______;若N的全部高茎红花植株自由交配,其子代中矮茎白花个体占______

(2)乙植株发生了的变异类型是______;发生该变异时,基因的碱基______

(3)如果乙植株产生配子时,具有同源区段的染色体都可以正常进行联会,该植株产生的配子类型共有______种.

(4)为检测某植物体是否含有A基因,首先要在含有A基因的______,以此作为探针,与从该植物提取出来的______进行______

正确答案

解:(1)由于甲植株的基因型为AaBb,所以其自交产生的子代中矮茎红花个体的基因型为aaBB和aaBb,其中纯合子占;高茎红花植株的基因型及比例为AABB:AaBB:AABb:AaBb=1:2:2:4,则A的基因频率为=,a的基因频率为;B的基因频率为=,b的基因频率为.全部高茎红花植株自由交配,其子代中矮茎白花个体(aabb)占=

(2)乙植株发生的变异是在非同源染色体之间,其类型是染色体结构变异中的易位.发生该变异时,基因的碱基没有发生改变.

(3)由于乙植株产生配子时,具有同源区段的染色体都可以正常进行联会.如果Ⅰ中的两条染色体联会,Ⅱ中的两条染色体联会,则可产生A、Ab、aB、aBb4种类型的配子;如果是含B的染色体与含b的染色体联会,则可产生AaB、Ab、aB、b4种类型的配子.因此,该植株产生的配子类型共有A、Ab、aB、aBb、AaB、b6种.

(4)在含有A基因的DNA片段上用放射性同位素做标记后,可作为探针,与从该植物提取出来的基因组DNA进行杂交,从而检测某植物体是否含有A基因.

故答案为:

(1)        

(2)染色体易位或染色体结构变异    不变             

(3)6     

(4)DNA片段上用放射性同位素做标记    基因组DNA(mRNA)   杂交(分子杂交或碱基互补配对)

解析

解:(1)由于甲植株的基因型为AaBb,所以其自交产生的子代中矮茎红花个体的基因型为aaBB和aaBb,其中纯合子占;高茎红花植株的基因型及比例为AABB:AaBB:AABb:AaBb=1:2:2:4,则A的基因频率为=,a的基因频率为;B的基因频率为=,b的基因频率为.全部高茎红花植株自由交配,其子代中矮茎白花个体(aabb)占=

(2)乙植株发生的变异是在非同源染色体之间,其类型是染色体结构变异中的易位.发生该变异时,基因的碱基没有发生改变.

(3)由于乙植株产生配子时,具有同源区段的染色体都可以正常进行联会.如果Ⅰ中的两条染色体联会,Ⅱ中的两条染色体联会,则可产生A、Ab、aB、aBb4种类型的配子;如果是含B的染色体与含b的染色体联会,则可产生AaB、Ab、aB、b4种类型的配子.因此,该植株产生的配子类型共有A、Ab、aB、aBb、AaB、b6种.

(4)在含有A基因的DNA片段上用放射性同位素做标记后,可作为探针,与从该植物提取出来的基因组DNA进行杂交,从而检测某植物体是否含有A基因.

故答案为:

(1)        

(2)染色体易位或染色体结构变异    不变             

(3)6     

(4)DNA片段上用放射性同位素做标记    基因组DNA(mRNA)   杂交(分子杂交或碱基互补配对)

1
题型:简答题
|
简答题

某植物花的颜色由位于非同源染色体上的多对等位基因共同决定.当显性A、B、C、D同时存在时是红色的,当另一个显性基因E也存在时,花成为紫色.当A、B、C、D中任何一个基因不存在时,花是白色的.纯合的红花植株甲与纯合的白花植株乙杂交得F1,若将F1植株自交,所得的F2植株中紫花:红花:白花=9:3:4.请回答:

(1)根据上述杂交实验的结果,可推知该植物的花色遗传遵循基因的______定律,植株甲的基因型是______,纯合白花植株乙的基因型可能有______种.

(2)F2植株中白花植株中纯合体所占的比例为______

(3)基因型为AaBBCcDDEe的紫花个体自交,子一代中白花个体所占的比例为______

(4)基因型为aabbCCDDEE的植株与纯合白花植株乙杂交,Fl的表现型为______花.

正确答案

解:(1)根据以上分析已知,某植物花的颜色由位于非同源染色体上的多对等位基因共同决定,可以推知植物的花色遗传遵循基因的分裂和自由组合定律,当显性A、B、C、D同时存在时是红色的,当另一个显性基因E也存在时,花成为紫色,又因为甲是纯合的红色,所以E的基因为e,则甲的基因型为AABBCCDDee;因F2植株中有紫花存在,因此纯合白花植株乙的基因中含有EE,则乙的基因型可能是aaBBCCDDEE或AAbbCCDDEE或AABBccDDEE或AABBCCddEE,4种.

(2)若甲的基因型为AABBCCDDee,乙的基因型为aaBBCCDDEE,则子一代基因型为AaBBDDEe,当A、B、C、D中任何一个基因不存在时,花是白色的.因此F2植株中白色中纯合子占

(3)基因型为从AaBBCcDDEe的紫花个体自交,子一代中白花个体所占的比例为1-×=

(4)基因型为aabbCCDDEE的植株与纯合白花植株乙(aaBBCCDDEE或AAbbCCDDEE或AABBccDDEE或AABBCCddEE)杂交,Fl全可能为白色(aaBbCCDDEE、AabbCCDDEE)或为紫花(AaBbCcDDEE、AaBbCCDdEE).

故答案为:

(1)分离和自由组合(只答自由组合也可)   AABBCCDDee     4

(2) 

(3)

(4)紫或白

解析

解:(1)根据以上分析已知,某植物花的颜色由位于非同源染色体上的多对等位基因共同决定,可以推知植物的花色遗传遵循基因的分裂和自由组合定律,当显性A、B、C、D同时存在时是红色的,当另一个显性基因E也存在时,花成为紫色,又因为甲是纯合的红色,所以E的基因为e,则甲的基因型为AABBCCDDee;因F2植株中有紫花存在,因此纯合白花植株乙的基因中含有EE,则乙的基因型可能是aaBBCCDDEE或AAbbCCDDEE或AABBccDDEE或AABBCCddEE,4种.

(2)若甲的基因型为AABBCCDDee,乙的基因型为aaBBCCDDEE,则子一代基因型为AaBBDDEe,当A、B、C、D中任何一个基因不存在时,花是白色的.因此F2植株中白色中纯合子占

(3)基因型为从AaBBCcDDEe的紫花个体自交,子一代中白花个体所占的比例为1-×=

(4)基因型为aabbCCDDEE的植株与纯合白花植株乙(aaBBCCDDEE或AAbbCCDDEE或AABBccDDEE或AABBCCddEE)杂交,Fl全可能为白色(aaBbCCDDEE、AabbCCDDEE)或为紫花(AaBbCcDDEE、AaBbCCDdEE).

故答案为:

(1)分离和自由组合(只答自由组合也可)   AABBCCDDee     4

(2) 

(3)

(4)紫或白

百度题库 > 高考 > 生物 > 孟德尔的豌豆杂交实验(二)

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题