热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

18.某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.

(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;

(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并  判断是否有90%的把握认为“数学尖子生与性别有关”?

附:

正确答案

(1);(2)所以没有90%的把握认为“数学尖子生与性别有关”.

解析

试题分析:本题属古典概型及独立性检验,(1)先根据分层抽样算出抽出的人数,然后利用古典概型的公式计算;(2)列出联表然后代入公式计算出k的观测值,然后下结论。

试题解析:(1)解:由已知得,抽取的100名学生中,男生60名,女生40名

分数小于等于110分的学生中,

男生人有60×0.05 = 3(人),记为A1A2A3;女生有40×0.05 = 2(人),记为B1B2

从中随机抽取2名学生,所有的可能结果共有10种,它们是:(A1A2),(A1A3),

(A2A3),(A1B1),(A1B2),(A2B1),(A2B2),(A3B1),(A3B2),(B1B2)

其中,两名学生恰好为一男一女的可能结果共有6种,它们是:(A1B1),(A1B2),

(A2B1),(A2B2),(A3B1),(A3B2),

故所求的概率

(2)解:由频率分布直方图可知,

在抽取的100名学生中,男生 60×0.25 = 15(人),女生40×0.375 = 15(人)

据此可得2×2列联表如下:

所以得       11分

因为1.79 < 2.706.

所以没有90%的把握认为“数学尖子生与性别有关”.

考查方向

本题考查了古典概型及独立性检验。

解题思路

本题考查了古典概型及独立性检验,解题步骤如下:(1)先根据分层抽样算出抽出的人数,然后利用古典概型的公式计算;(2)列出联表然后代入公式计算出k的观测值,然后下结论。

易错点

在找基本事件的个数的时候有可能遗漏或者重复。

知识点

随机事件的频率与概率实际推断原理和假设检验实际推断原理和假设检验的应用
下一知识点 : 实际推断原理和假设检验的应用
百度题库 > 高考 > 文科数学 > 实际推断原理和假设检验

扫码查看完整答案与解析

  • 上一题
  • 1/1
  • 下一题