- 由y=Asin(ωx+φ)的部分图象确定其解析式
- 共39题
15.设函数的部分图象如图所示.
(1)求函数的解析式;
(2)当时,求
的取值范围.
正确答案
(1);
(2)
解析
试题分析:本题属于三角函数图像的基本问题,题目的难度是逐渐由易到难,(1)直接按照求A、ω、φ步骤来求(2)转化成求函数的最值,要结合图像,要特别注意函数的定义域。
(1)由图象知,,
又,
,所以
,得
.
所以,将点
代入,得
,
即,又
,所以
.
所以.
(2)当时,
,
所以,即
.
考查方向
解题思路
本题考查三角函数的图形和性质,解题步骤如下:
1、根据函数图像,确定A、ω、φ,进而求出函数的解析式。
2、求函数的解析式,必须在给定的x的取值范围内求解。
易错点
1、第一问中的根据角的范围如何确定φ。
2、第二问中求的取值范围,必须先求出x的取值范围,同时结合三角函数的图像去分析。
知识点
17.在公比为的等比数列
中,
与
的等差中项是
.
(Ⅰ)求的值;
(Ⅱ)若函数,
,的一部分图像如图所示,
,
为图像上的两点,设
,其中
与坐标原点
重合,
,求
的值.
正确答案
(Ⅰ)
(Ⅱ)
解析
试题分析:本题属于数列和三角函数中的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求(2)要注意图像的应用.
(Ⅰ) 解:由题可知,又
,
故 ∴
(Ⅱ)∵点在函数
的图像上,
∴,
又∵,∴
如图,连接,在
中,由余弦定理得
又∵ ∴
∴
∴
考查方向
本题考查了数列与三角函数的知识,涉及到等比数列及三角函数的应用,是高考题中的高频考点.
解题思路
本题考查数列与三角函数的知识,解题步骤如下:
1、利用通项公式求解。
2、利用函数图像性质代入求解。
易错点
三角函数图像易错。
知识点
13.已知函数是偶函数,它的部分图象如
图所示.M是函数
图象上的点,K,L是函数
的图象与x轴的交点,且
为等腰直角三角形,则
___________;
正确答案
解析
由题意可知
又∵函数为偶函数 ∴ ∴
又∵
考查方向
解题思路
根据正弦型函数的图像容易得到2利用相邻的零点与对称轴之间的距离求出
的值,3利用函数的奇偶性和
的范围求出
的取值,4把对应的值带入
,根据诱导公式进行化简
易错点
本题易于在求解时使用零点时忽略零点所在的单调区间,在求值时易于忽略正弦型函数前面的系数
知识点
8.已知,且
,函数
的图像的相邻两条对称轴之间的距离等于
,则
的值为( )
正确答案
解析
三角函数相邻两对称轴正好跨度了半个周期所以
,
,
=
又,且
,所以
考查方向
解题思路
利用堆成轴间距求出周期确定,然后利用诱导公式求解。
易错点
无法利用条件确定周期进而求解。
知识点
3.如图,某港口一天6时到18时的水深变化曲线近似满足函数,据此函数可知,这段时间水深(单位:m)的最大值为( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析