- 不等式的应用
- 共23题
16.某高科技企业生产产品A和产品B需要甲、乙两种新型材料。生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元。该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元 .
正确答案
216000(元)
知识点
19.某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此,搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损零件数.
(I)若=19,求y与x的函数解析式;
(II)若要求 “需更换的易损零件数不大于”的频率不小于0.5,求
的最小值;
(III)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?
正确答案
解:当n=19时 x≤19 y=19×200=3800元
(1)x>19时 y=19×200+(x-19)·500=500x-5700(元)·
∵ y=
(2)由柱状图知,更换16个频率0.06;更换17件频率为0.16.
更换18件频率为0.24,更换19件频率为0.24 ∴ 更换易损零件不大于n〃的频率为不小于0.5的.则n≥19
∴ n的最小值为19件
(3)若每台都购买19个易损零件,所须费用平均数为
=4000(元)
若每台都购买20个易损零件,所须费用平均数为
=4050(元) 4000<4050
∴ 购买1台机器的同时应购买19台易损零件.
知识点
12. 已知实数x,y满足 ,则x2+y2的取值范围是 .
正确答案
知识点
3.已知6双袜子与3双手套的价格之和大于24元,而1双袜子与1双手套的价格之和小于5元,那么2双袜子和3双手套的价格的比较结果是( )
正确答案
解析
设一双袜子与一双手套的价格分别为x,y元,则6x+3y>24,得2x+y>8,又x+y<5,所以2x-3y=5(2x+y)-8(x+y)>5×8-8×5=0,故2双袜子的价格高。
知识点
观察下列不等式:
①;②
;③
正确答案
解析
略
知识点
已知,则
的最小值_________;
正确答案
6
解析
略
知识点
的最大值为
正确答案
解析
略。
知识点
已知是不等式组
所表示的平面区域内的两个不同的点,则
的最大值是()
正确答案
解析
略
知识点
已知,
满足约束条件
,若
的最小值为
,则
正确答案
解析
略
知识点
9.已知是定义在R上的不恒为零的函数,且对于任意实数
满足
考察下列结论:
①;
②为偶函数;
③数列为等比数列;
④数列为等差数列。
其中正确的结论是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析