- 线面角和二面角的求法
- 共279题
如图,在底面是正方形的四棱锥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.
(1)求证:;
(2)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由;
(3)当二面角的大小为
时,求PC与底面ABCD所成角的正切值.
正确答案
见解析
解析
知识点
如图,在四棱锥中,底面
为正方形,
平面
,已知
,
为线段
的中点。
(1)求证:平面
;
(2)求二面角的平面角的余弦值。
正确答案
见解析。
解析
证明(1)连结和
交于
,连结
, …………………………………………1分
为正方形,
为
中点,
为
中点,
,…………………………………………………………………………………3分
平面
,
平面
平面
,…………………………………………………………………………4分
(2)平面
,
平面
,
,
为正方形,
,
平面
,
平面
,
平面
,
……………………………………………………6分
以
为原点,以
为
轴建立如图所示的坐标系,
则,
,
,
平面
,
平面
,
,
为正方形,
,
由为正方形可得:
,
设平面的法向量为
,
由,令
,则
……………………………………………………………………………8分
设平面的法向量为
,
,
由 ,令
,则
,
……………………………………………………………………10分
设二面角的平面角的大小为
,则
二面角
的平面角的余弦值为
……………………………………12分
知识点
如图5,在四棱锥中,底面ABCD是边长为
2的菱形,且DAB=60. 侧面PAD为正三角形,其所在的平
面垂直于底面ABCD,G为AD边的中点.
(1)求证:BG平面PAD;
(2)求平面PBG与平面PCD所成二面角的平面角的余弦值;
(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF平面ABCD,并证明你的结论.
正确答案
见解析。
解析
(1)证明:连结BD.
因为ABCD为棱形,且∠DAB=60°,所以ABD为正三角形.
又G为AD的中点,所以BG⊥AD.
又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
∴BG⊥平面PAD.
(2)∵△PAD为正三角形,G为AD的中点,∴PG⊥AD.
∵PG平面PAD,由(1)可得:PG⊥GB. 又由(1)知BG⊥AD.
∴PG、BG、AD两两垂直.
故以G为原点,建立如图所示空间直角坐标系,
,
,
所以,
,
,
,
设平面PCD的法向量为, 即
令,则
又平面PBG的法向量可为,
设平面PBG与平面PCD所成二面角的平面角为,则
∴
即平面PBG与平面PCD所成二面角的平面角的余弦值为.
(3)当F为PC的中点时,平面DEF⊥平面ABCD.
取PC的中点F,连结DE,EF,DF,CG,且DE与CG相交于H.
因为E、G分别为BC、AD的中点,所以四边形CDGE为平行四边形,
故H为CG的中点. 又F为CP的中点,所以FH//PG.
由(2),得PG平面ABCD,所以FH平面ABCD.
又FH平面DEF,所以平面DEF⊥平面ABCD.
知识点
已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿直线BD将△BCD翻折成△BD,使得平面B
平面ABD.
(1)求证:平面ABD;
(2)求直线BD与平面所成角的正弦值.
正确答案
见解析。
解析
知识点
如图1,在直角梯形ABCD中,AD∥BC,AD=AB=,∠BAD=90o,∠BCD=45o,E为对角线BD的中点.现将△ABD沿BD折起到△PBD的位 置,使平面PBD⊥平面BCD,如图2.
(1)求证直线PE⊥平面BCD;
(2)求异面直线BD和PC所成角的余弦值;
(3) 已知空间存在一点Q到点P,B,C,D的距离相等,写出这个距离的值(不用说明理由)。
正确答案
见解析
解析
知识点
扫码查看完整答案与解析