- 导数与积分
- 共1403题
22.已知定义在正实数集上的函数,
,其中
.设两曲线
,
有公共点,且在该点处的切线相同。
(I)用表示
,并求
的最大值;
(II)求证:(
)。
正确答案
(Ⅰ)设与
在公共点
处的切线相同。
,
,由题意
,
.
即由
得:
,或
(舍去)。
即有.
令,则
.于是
当,即
时,
;
当,即
时,
.
故在
为增函数,在
为减函数,
于是在
的最大值为
.
(Ⅱ)设,
则.
故在
为减函数,在
为增函数,
于是函数在
上的最小值是
.
故当时,有
,即当
时,
.
解析
解析已在路上飞奔,马上就到!
知识点
13.若曲线的一条切线
与直线
垂直,则
的方程为( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
17.设函数为奇函数,其图象在点
处的切线与直线
垂直,导函数
的最小值为-12。
(1)求的值;
(2)求函数的单调递增区间,并求函数
在上
的最大值和最小值。
正确答案
(1)∵为奇函数,
∴即
∴
∵的最小值为
∴
又直线的斜率为
因此,
∴,
,
.
(2).
,列表如下:
所以函数的单调增区间是
和
∵,
,
∴在
上的最大值是
,最小值是
.
解析
解析已在路上飞奔,马上就到!
知识点
22.已知函数,其中
.
(1)求函数的单调区间;
(2)若直线是曲线
的切线,求实数
的值;
(3)设,求
在区间
上的最小值。(其中
为自然对数的底数)
正确答案
解:(1),(
),
在区间和
上,
;在区间
上,
.
所以,的单调递减区间是
和
,单调递增区间是
.
(2)设切点坐标为,
则
解得,
.
(3),
则,
解,得
,
所以,在区间上,
为递减函数,
在区间上,
为递增函数.
当,即
时,在区间
上,
为递增函数,
所以最小值为
.
当,即
时,在区间
上,
为递减函数,
所以最小值为
.
当,即
时,最小值
=
.
综上所述,当时,
最小值为
;
当时,
的最小值
=
;
当时,
最小值为
.
解析
解析已在路上飞奔,马上就到!
知识点
22. 已知函数,
(I)当时,求曲线
在点
处的切线方程;
(II)在区间内至少存在一个实数
,使得
成立,求实数
的取值范围。
正确答案
(I)当时,
,
,
曲线在点
处的切线斜率
,
所以曲线在点
处的切线方程为
.
(II)解1:
当,即
时,
,
在
上为增函数,
故,所以
,
,这与
矛盾
当,即
时,
若,
;
若,
,
所以时,
取最小值,
因此有,即
,
解得,
这与矛盾;
当即
时,
,
在
上为减函数,
所以,所以
,解得
,这符合
.
综上所述,的取值范围为
.
解2:有已知得:,
设,
,
,
,所以
在
上是减函数.
, 所以
.
解析
解析已在路上飞奔,马上就到!
知识点
18.已知函数(x∈R),其中a∈R.
(I)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(II)当a≠0时,求函数f(x)的单调区间与极值。
正确答案
(I)解:当a=1时,.
又.
所以,曲线y=f(x)在点(2,f(2))处的切线方程为,
即6x+25y﹣32=0.
(II)解:=
.
由于a≠0,以下分两种情况讨论.
(1)当a>0时,令f'(x)=0,得到.
当x变化时,f'(x),f(x)的变化情况如下表:
所以f(x)在区间,(a,+∞)内为减函数,
在区间内为增函数.
函数f(x)在处取得极小值
,且
.
函数f(x)在x2=a处取得极大值f(a),且f(a)=1.
(2)当a<0时,令f'(x)=0,得到.
当x变化时,f'(x),f(x)的变化情况如下表:
所以f(x)在区间(﹣∞,a)内为增函数,在区间
内为减函数.
函数f(x)在x1=a处取得极大值f(a),且f(a)=1.
函数f(x)在处取得极小值
,且
.
解析
解析已在路上飞奔,马上就到!
知识点
18.垂直于直线
并且与曲线
相切。
(1)求的斜率,求
;
(2)求切点坐标,求直线的方程。
正确答案
(1)k=-3
(2)设切点为
切线的斜率,得
代入到 得
,即
解析
解析已在路上飞奔,马上就到!
知识点
5.曲线在点
处的切线方程为
,则( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
21.已知函数
。
(I)若曲线在点
处的切线与直线
垂直,求a的值;
(II)求的单调区间;
(III)若,函数
,如果对任意的
,总存在
,求实数b的取值范围。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
22.已知函数,在点
处的切线方程为
(1)求函数的解析式;
(2)若对于区间上任意两个自变量的值
,都有
,求实数
的最小值;
(3)若过点,可作曲线
的三条切线,求实数
的取值范围。
正确答案
(1)
根据题意,得 即
解得
(2)令,解得
f(-1)=2, f(1)=-2,
时,
则对于区间[-2,2]上任意两个自变量的值,都有
所以所以
的最小值为4。
(3)设切点为
,
切线的斜率为
则
即,
因为过点,可作曲线
的三条切线
所以方程有三个不同的实数解
即函数有三个不同的零点,
则
令
即
,∴
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析