- 导数与积分
- 共1403题
10. 设











正确答案
解析
解析已在路上飞奔,马上就到!
知识点
8.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9。已知这组数据的平均数为10,方差为2,则|x-y|的值为( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
13.如图,若正方形ABCD-A1B1C1D1的棱长为1,则三棱锥A-A1BD的体积为________
正确答案
解析
知识点
6.函数f(x)为R上的偶函数,对x∈R都有f(x+6)=f(x)+f(3)成立,若f(1)=2,则f(2017)= ( )
正确答案
解析
令x=-3,则f( -3+6)=f( -3)+f(3),所以f(3)=f(-3)+f(3)
即f(-3)=0,f(3)=0,所以T=6
所以f(2017)=f(1)=2,故选B.
知识点
3.若函数y=f(x)的值域是[2,3],则函数F(x)=f(x)+
正确答案
解析
令t=f(x),则t∈[2,3],
则F(x)=f(x)+

因为y'=
所以

故函数F(x)的值域为
知识点
10.已知点P是正方形ABCD所在的平面外一点,PD⊥平面ABCD,PD=AD=l,设点C到平面PAB的距离为d1,点B到平面PAC的距离为d2,则( )
正确答案
解析
由题意得d1=l,d2=l,故d2<d1<l.
知识点
21.已知函数
(1)若函数


(2)当




正确答案
(1)
(2)
解析
用导数研究函数的性质的问题,是导数题目中的常见问题;用导数作为工具来解决不等式问题,题目综合性较强,难度较大。解答过程如下:
(1)
由题意知







(2)


令

令


∵


即当








令


∴


请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.
考查方向
解题思路
1、第(1)问可以通过函数的单调性与导数的关系,通过解不等式求得
2、第(2)问可以通过转化化归的方法,将问题转化为函数的最大、最小值问题进行求解。
易错点
不会对问题进行等价转化而导致不会做。
知识点
5.已知函数


正确答案
解析
因为函数
所以
令

所以
应选D
考查方向
解题思路
由函数
应选D
易错点
函数
知识点
21.设函数



(1)求
(2)证明:
正确答案
(1)
解析
试题分析:本题属于导数的综合应用问题,属于拔高题,不容易得分,解析如下:
(Ⅰ)∵
∴
又点

∴
∴

(Ⅱ)由(Ⅰ)知
又∵

且
∴存在

当


∴
由
∴
综上,对任意

考查方向
解题思路
(1)直接利用导数的几何意义即可求出函数的解析式;
(2)先判断函数的单调性,再利用导数证明.
易错点
第二问对题中所给条件不知如何下手导致失分。
知识点
15.已知函数



正确答案
5
解析
由题可知:f(1)+f(2)+f[f(1)]=4, 且
f(2)+f(3)+f[f(2)]=7,故f(3)=4;f(3)+f(4)+f[f(3)]=10,故f(4)=3;
f(4)+f(5)+f[f(4)]=13,故f(5)=6;
f(5)+f(6)+f[f(5)]=16,则 f(6)=5。
考查方向
解题思路
本题考查函数的性质,解题思路如下:反复代值计算即可
易错点
本题必须注意反复代值计算
知识点
扫码查看完整答案与解析





















