热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题

在空间中两两垂直的平面最多有______个.

正确答案

3

解析

解:在空间两两垂直的平面最多有3个,

理由:两个平面相交形成一条直线,而过一点两两垂直的直线最多画3条,3个平面最多形成3条相交线.

故答案为:3.

1
题型:填空题
|
填空题

已知m、n是直线,α、β、γ是平面,给出下列命题:

①若α⊥β,α∩β=m,n⊥m,则n⊥α或n⊥β;

②若α∥β,α∩γ=m,β∩γ=n,则m∥n;

③若m不垂直于α,则m不可能垂直于α内的无数条直线;

④若α∩β=m,n∥m;且n∉α,n∉β,则n∥α且n∥β.

其中正确的命题的序号是______.(注:把你认为正确的命题的序号都填上)

正确答案

②④

解析

解:①若α⊥β,α∩β=m,n⊥m,则n⊥α或n⊥β;正确性无法判断,直线n在与交线m垂直的平面上,故位置关系不确定.

②若α∥β,α∩γ=m,β∩γ=n,则m∥n;正确,由面面平行的性质定理可证得.

③若m不垂直于α,则m不可能垂直于α内的无数条直线;不正确,任意一条直线都可以在平面内有无数条与之垂直的直线.

④若α∩β=m,n∥m;且n∉α,n∉β,则n∥α且n∥β.正确,由线面平行的判定定理知线n与两平面都是平行的.

故应填②④.

1
题型:简答题
|
简答题

求证:如果共点的三条直线两两垂直,那么它们中每条直线确定的平面也两两垂直.

正确答案

已知:直线a,b,c共点且两两垂直,直线a和b确定的平面为α,直线a和c确定的平面为β,直线b和c确定的平面为γ,

求证:a⊥γ,b⊥β,c⊥α,

证明:∵直线a,b,c共点且两两垂直,直线b和c确定的平面为γ,

∴由直线与平面垂直的判定定理可得a⊥γ,

同理可证b⊥β,c⊥α,

∴原命题得证

解析

已知:直线a,b,c共点且两两垂直,直线a和b确定的平面为α,直线a和c确定的平面为β,直线b和c确定的平面为γ,

求证:a⊥γ,b⊥β,c⊥α,

证明:∵直线a,b,c共点且两两垂直,直线b和c确定的平面为γ,

∴由直线与平面垂直的判定定理可得a⊥γ,

同理可证b⊥β,c⊥α,

∴原命题得证

1
题型:填空题
|
填空题

如图,矩形ABCD中,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE.若M为线段A1C的中点,则在△ADE翻转过程中,正确的命题是______

①MB总是平行平面A1DE;

②|BM|是定值;

③点M在圆上运动.

正确答案

①②③

解析

解:取CD中点F,连接MF,BF,则MF∥DA1,BF∥DE,∴平面MBF∥平面A1DE,∴MB∥平面A1DE,故①正确

=定值,NB=DE=定值,

由余弦定理可得MB2=MN2+NB2-2MN•NB•cos∠MNB,所以MB是定值,故②正确.

∵B是定点,∴M是在以B为圆心,MB为半径的圆上,故③正确,

故答案为:①②③.

1
题型: 单选题
|
单选题

设a,b为两条直线,α,β为两个平面,则下列结论成立的是(  )

A若a⊂α,b⊂β,且a∥b,则α∥β

B若a⊂α,b⊂β,且a⊥b,则α⊥β

C若a∥α,b⊂α,则a∥b

D若a⊥α,b⊥α,则a∥b

正确答案

D

解析

解:A选项不正确,两个平面中的两条直线平行不能得出两平面平行;

B选项不正确,两个平面中的两条直线垂直不能得得出两平面垂直;

C选项不正确,一个直线与一个平面平行,则与这个平面中的直线的位置关系是平行或异面;

D选项正确,垂直于同一平面的两条直线平行;

故选D

百度题库 > 高考 > 数学 > 平面与平面之间的位置关系

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题