- 空间向量及其运算
- 共1844题
如图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,如图1;将线段AB围成一个圆,使两端点A,B恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),如图3.图3中直线AM与x轴交于点N(n,0),则m的像就是n,记作f(m)=n.则在下列说法中正确命题的个数为( )
①f()=1;②f(x)为奇函数;③f(x)在其定义域内单调递增;④f(x)的图象关于点(
,0)对称.
正确答案
已知=(1-t,1-t,t),
=(3,t,t),则|
-
|的最小值______.
正确答案
|-
|=
=,
∴当t=-1时,|AB|有最小值,
故答案为:.
已知向量,且A、B、C三点共线,则k=_________.
正确答案
略
在平面直角坐标系xOy中,点P是圆上一动点,
x轴于点D.记满足
的动点M的轨迹为Γ.
(1)求轨迹Γ的方程;
(2)已知直线与轨迹Γ交于不同两点A,B,点G是线段AB中点,射线OG交轨迹Γ于点Q,且
.
①证明:
②求△AOB的面积S(λ)的解析式,并计算S(λ)的最大值.
正确答案
(1);(2)
试题分析:(1)由已知M是PD的中点,利用P点在圆上,可以求出M的点轨迹方程为;(2)点Q在(1)中的椭圆上,G是OQ上的分点,利用直线与椭圆的关系,可以找到λ与m和k的关系,并进一步将三角形AOB的面积表示成λ的函数关系式,再求出它的最大值.
试题解析:(1)设,则点
,且
(1)
∵
∴ (2)
将(2)代入(1),得
∴轨迹Γ的方程为; 5分
(2)①令
由消去y
得 6分
∴,即
(3)
∴
又由中点坐标公式,得
根据,得
将其代入椭圆方程,有
化简得: (4) 9分
②由(3)(4)得
∵ (5)
在△AOB中, (6)
∴由(4)(5)(6)可得 12分
令
则(当且仅当t=1时,即
时取“=”)
∴当时,
取得最大值,其最大值为1. 13分
已知向量a=(-1,2),b=(5,k),若a∥b,则实数k的值为( )
正确答案
已知向量a=(1,1),b=(2,x).若a+b与4b-2a平行,则实数x的值是( )
正确答案
若向量a,b,c满足a∥b且a⊥c,则c·(a+2b)=
正确答案
若向量a=(1,—1),b=(—1,1),c=(5,1),则c+a+b=
正确答案
设向量a="(1,"x-1),b=(x+1,3),则“x=2”是“a//b”的()
正确答案
若三点P(1,1),A(2,-4),B(x,-14)共线,则( )
正确答案
扫码查看完整答案与解析