- 平抛运动
- 共6585题
如图所示,斜面上有a、b、c、d四个点,ab=bc=cd,从a点以初动能E0水平抛出一个小球,它落在斜面上的b点,若小球从a点以初动能2E0水平抛出,不计空气阻力,则下列判断正确的是( )
正确答案
解析
解:设斜面的倾角为θ,小球落在斜面上,竖直方向上的位移与水平方向位移的比值
解得:t=
在竖直方向上的位移y==
当初动能变为原来的2倍,即速度的平方变为原来的两倍,则竖直位移变为原来的两倍;故小球应落在c点,故A错误,B正确;
因下落时速度夹角正切值一定为位移夹角正切值的两倍,因两次下落中的位移夹角相同,故速度夹角也一定相同,故CD错误;
故选:B.
如图所示,小球自A点以某一初速做平抛运动,飞行一段时间后垂直打在斜面上的B点,已知v0=10m/s,θ=30°,则A、B间的高度差为______.(g取10m/s2)
正确答案
15m
解析
解:小球撞在斜面上时速度与竖直方向的夹角为30°,则根据速度的分解可得:
竖直方向的速度为:vy==
=
m/s
运动时间:t==
=
故:小球下落竖直距离:y==
=15m
故答案为:15m
以某一水平初速度v0抛出一物体,飞行时间t=2s后,撞在倾角θ=30°的斜面上,此时物体的速度方向刚好与斜面成α=60°的夹角,如图所示.则此物体的水平初速度 v0等于(取g=10m/s2)( )
正确答案
解析
解:物体做平抛运动,物体撞在斜面上时竖直方向上的分速度的大小为 vy=gt=20m/s
此时速度与水平方向的夹角为 β=α-θ=60°-30°=30°
则初速度为 v0=vycotβ=20×cot30°=20m/s
故选:C.
射击运动员沿水平方向对准正前方100m处的竖直靶板射击,第一发子弹射在靶上的A点,经测量计算,得知子弹飞行速度为500m/s,第二发子弹击中A点正下方5cm处的E点,求第二发子弹飞行速度.(不计空气影响,g=10m/s2)
正确答案
解:两颗子弹都做平抛运动,第一发子弹飞行时间:
t1==
=0.2s
则第一发子弹下落高度:
h1=gt12=
=0.2m
第二发子弹下落高度:
h2=h1+0.05m=0.25m
下落时间:
t2==
=
s
则第二发子弹的初速度:
v2==
m/s=200
m/s≈447m/s.
答:第二发子弹飞行速度约为447m/s.
解析
解:两颗子弹都做平抛运动,第一发子弹飞行时间:
t1==
=0.2s
则第一发子弹下落高度:
h1=gt12=
=0.2m
第二发子弹下落高度:
h2=h1+0.05m=0.25m
下落时间:
t2==
=
s
则第二发子弹的初速度:
v2==
m/s=200
m/s≈447m/s.
答:第二发子弹飞行速度约为447m/s.
在一次飞车过黄河的表演中,汽车在空中飞经最高点后在对岸着地,已知汽车从最高点到着地经历时间为0.8s,两点间的水平距离为20m.忽略空气阻力,则最高点与着地点间的高度差为______ m;最高点的速度是______m/s.
正确答案
3.2
25
解析
解:根据h=得,最高点与着地点间的高度差h=
.
则最高点的速度.
故答案为:3.2,25.
扫码查看完整答案与解析