- 导数的概念及其几何意义
- 共3697题
过x轴上的动点A(a,0)的抛物线y=x2+1引两切线AP、AQ,P、Q为切点.
(1)若切线AP,AQ的斜率分别为k1,k2,求证:k1k2为定值;
(2)求证:直线PQ过定点;
(3)若a≠0,试求S△APQ:|OA|的最小值.
正确答案
解:(I)设切点P(x1,y1),Q(x1,y1)
由题意可得,kAP==
,
由导数的几何意义可得,kAP=2x1,
∴=2x1,
整理可得,
同理可得﹣1=0,
从而可得x1,x2是方程x2﹣2ax﹣1=0的两根,
∴x=a±,k1=
,k2=
,
∴k1·k2==﹣4,
即k1·k2为定值﹣4.
(II)设P(x1,y1),Q(x2,y2),
由于y'=2x,
故切线AP的方程是:y﹣y1=2x1(x﹣x1),
则﹣y1=2x1(a﹣x1)=2x1a﹣2x12=2x1a﹣2(y1﹣1)
∴y1=2x1a+2,同理y2=2x2a+2,
则直线PQ的方程是y=2ax+2,则直线PQ过定点(0,2).
(Ⅲ)即A(a,0)点到PQ的距离,
要使最小,就是使得A到直线PQ的距离最小,
而A到直线PQ的距离d==
=
≥
,
当且仅当,
即a2=时取等号,
∴最小值为
.
已知某工厂生产件产品的成本为
(元),
问:(1)要使平均成本最低,应生产多少件产品?
(2)若产品以每件500元售出,要使利润最大,应生产多少件产品?
正确答案
(1) 1000 ;(2) 6000.
试题分析:(1)先根据题意设生产x件产品的平均成本为y元,再结合平均成本的含义得出函数y的表达式,最后利用导数求出此函数的最小值即可;
(2)先写出利润函数的解析式,再利用导数求出此函数的极值,从而得出函数的最大值,即可解决问题:要使利润最大,应生产多少件产品..
试题解析:解:(1)设平均成本为元,则
,
,令
得
.
当在附近左侧时
;
在附近右侧时
,故当
时,
取极小值,而函数只有一个点使
,故函数在该点处取得最小值,因此,要使平均成本最低,应生产1000件产品. 6分;
(2)利润函数为,
,
令,得
,当在
附近左侧时
;在
附近右侧时
,故当
时,
取极大值,而函数只有一个点使
,故函数在该点处取得最大值,因此,要使利润最大,应生产6000件产品. 12分;
某企
业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为
立方米,且
.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为
.设该容器的建造费用为
千元.
(Ⅰ)写出关于
的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的.
正确答案
(1)+
,定义域为(0,
).
(2)米时,
该容器的建造费用最小.
(Ⅰ)因为容器的体积为立方米,所以
,解得
,所以圆柱的侧面积为
=
,两端两个半球的表面积之和为
,所以
+
,定义域为(0,
).
(Ⅱ)因为+
=
,所以令
得:
; 令
得:
,所以
米时,
该容器的建造费用最小.
已知函数f(x)=ax-lnx+1(a∈R),g(x)=xe1-x.
(1)求函数g(x)在区间(0,e]上的值域;
(2)是否存在实数a,对任意给定的x0∈(0,e],在区间[1,e]上都存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范围;若不存在,请说明理由.
(3)给出如下定义:对于函数y=F(x)图象上任意不同的两点A(x1,y1),B(x2,y2),如果对于函数y=F(x)图象上的点M(x0,y0)(其中x0=)总能使得F(x1)-F(x2)=F'(x0)(x1-x2)成立,则称函数具备性质“L”,试判断函数f(x)是不是具备性质“L”,并说明理由.
正确答案
(1)∵g'(x)=e1-x1xe1-x=ex-1(1-x)在区间(0,1]上单调递增,在区间[1,e)上单调递减,且g(0)=0,g(1)=1>g(e)=e2-e函数g(x)在区间(0,e]上的值域为(0,1]….(3分)
(2)令m=g(x),则由(1)可得m∈(0,1],原问题等价于:对任意的m∈(0,1]f(x)=m在[1,e]上总有两个不同的实根,故f(x)在[1,e]不可能是单调函数 …(5分)∵f′(x)=a-(1≤x≤e)
当a≤0时,f′(x)=a-<0,在区间[1,e]上递减,不合题意
当a≥1时,f'(x)>0,在区间[1,e]上单调递增,不合题意
当0<a≤时,f'(x)<0,在区间[1,e]上单调递减,不合题意
当1<<e即
<a<1时,在区间[1,
]上单调递减;在区间[
,e]上单递增,
由上可得a∈(,1),此时必有f(x)的最小值小于等于0且f(x)的最大值大于等于1,而由f(x)min=f(
)=2+lna≤0可得a≤
,则a∈Φ
综上,满足条件的a不存在.…..(8分)
(3)设函数f(x)具备性质“L”,即在点M处地切线斜率等于kAB,不妨设0<x1<x2,则kAB==
=a-
,而f(x)在点M处的切线斜率为f′(x0)=f′(
)=a-
,故有
=
…..(10分)
即ln=
=
,令t=
∈(0,1),则上式化为lnt+
-2=0,
令F(t)=lnt+-2,则由F′(t)=
-
=
>0可得F(t)在(0,1)上单调递增,故F(t)<F(1)=0,即方程lnt+
-2=0无解,所以函数f(x)不具备性质“L”.…(14分)
已知函数.
(1)当时,求函数
在点
处的切线方程;
(2)若函数在
上的图像与直线
恒有两个不同交点,求实数
的取值范围.
正确答案
(1);(2)
.
试题分析:(1)先求原函数的导函数,根据
求切线斜率,从而求得方程;(2)利用导函数求在已知范围内的单调性,再把端点函数值与0,1比较,满足题意解得
的取值范围..
试题解析:(1)
(2),由题意得
当
时,
递减,当
时,
递增
.
扫码查看完整答案与解析