- 导数的概念及其几何意义
- 共3697题
已知函数:.
(1)当a=﹣3时,求过点(1,0)曲线y=f(x)的切线方程;
(2)求函数y=f(x)的单调区间;
(3)函数是否存在极值?若有,则求出极值点;若没有,则说明理由.
正确答案
解:(1)当a=﹣3时,f(x)=﹣x3+1对函数求导可得,f'(x)=﹣3x2由导数的几何意义可得,曲线在(1,0)处的切线的斜率k=f'(1)=﹣3
∴过点(1,0)曲线y=f(x)的切线方程为y=﹣3(x﹣1)
即3x+y﹣3=0
(2)对函数求导可得,f'(x)=ax2+(a+3),
①当a≥0时,f'(x)>0,f(x)在(﹣∞,+∞)单调递增
②当a≤﹣3时,f'(x)≤0,f(x)在(﹣∞,+∞)单调递减
③当﹣3<a<0,由f'(x)>0,可得,
即f(x)在(﹣,+
)单调递增;
f'(x)≤0,f(x)在(﹣∞,],[
,+∞)单调递减
(3)由(2)得,当﹣3<a<0,函数在x=﹣存在极小值,在x=
存在极大值
已知函数.
(I)当a=﹣1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(II)当时,讨论f(x)的单调性.
正确答案
解:(I)当a=﹣1时,f(x)=1nx+x+ ﹣1,x∈(0,+∞),
所以f′(x)= +1﹣
,
因此,f′(2)=1,即曲线y=f(x)在点(2,f(2))处的切线斜率为1,
又f(2)=1n2+2,y=f(x)在点(2,f(2))处的切线方程为y﹣(1n2+2)=x﹣2,
所以曲线,即x﹣y+1n2=0;
(Ⅱ)因为 ,
所以 =
,x∈(0,+∞),
令g(x)=ax2﹣x+1﹣a,x∈(0,+∞),
(1)当a=0时,g(x)=﹣x+1,x∈(0,+∞),
所以,当x∈(0,1)时,g(x)>0,此时f′(x)<0,函数f(x)单调递增减;
(2)当a≠0时,由g(x)=0,即ax2﹣x+1﹣a=0,解得x1=1,x2= ﹣1.
①当a= 时,x1=x2,g(x)≥0恒成立,
此时f′(x)≤0,函数f(x)在(0,+∞)上单调递减;
②当0<a< 时,
﹣1>1>0 x∈(0,1)时,g(x)>0,
此时f′(x)<0,函数f(x)单调递减,
x∈(1, ﹣1)时,g(x)>0,此时f′(x)>0,函数f(x)单调递增,
x∈( ﹣1,+∞)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减;
③当a<0时,由于 ﹣1<0, x∈(0,1)时,g(x)>0,
此时f′(x)<0函数f(x)单调递减;
x∈(1,∞)时,g(x)<0此时函数f′(x)<0函数f(x)单调递增.
综上所述:当a≤0时,函数f(x)在(0,1)上单调递减;
函数f(x)在(1,+∞)上单调递增
当a= 时,函数f(x)在(0,+∞)上单调递减
当0<a< 时,函数f(x)在(0,1)上单调递减;
函数f(x)在(1, ﹣1)上单调递增;
函数f(x)在( ﹣1,+∞)上单调递减.
已知函数f(x)=x﹣ax2﹣lnx(a>0).
(1)若曲线y=f(x)在点(1,f(1))处的切线斜率为﹣2,求a的值以及切线方程;
(2)若f(x)是单调函数,求a的取值范围.
正确答案
解:(1)f′(x)=1﹣2ax﹣ .
由题设,f′(1)=﹣2a=﹣2,a=1,
此时f(1)=0,切线方程为y=﹣2(x﹣1),即2x+y﹣2=0.
(2)f′(x)=﹣ ,
令△=1﹣8a.
当a≥ 时,△≤0,f′(x)≤0,f(x)在(0,+∞)单调递减.
当0<a< 时,△>0,方程2ax2﹣x+1=0有两个不相等的正根x1,x2,
不妨设x1<x2,
则当x∈(0,x1)∪(x2,+∞)时,f′(x)<0,
当x∈(x1,x2)时,f′(x)>0,这时f(x)不是单调函数.
综上,a的取值范围是[ ,+∞).
已知函数f(x)=x2-8lnx,g(x)=-x2+14x。
(1)求函数f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)与g(x)在区间(a,a+1)上均为增函数,求a的取值范围。
(3)若方程f(x)=g(x)+m有唯一解,试求实数m的值。
正确答案
解:(1)因为
所以切线的斜率
又
故所求切线方程为
即。
(2)因为
又x>0,所以当x>2时,;
当0<x<2时,
即在
上递增
在(0,2)上递减
又
所以在
上递增
在上递减
欲f(x)与在区间
上均为增函数
则
解得。
(3)原方程等价于
令
则原方程即为
因为当时原方程有唯一解
所以函数与
的图象在y轴右侧有唯一的交点
且x>0
所以当x>4时,
当0<x<4时,
即在
上递增
在(0,4)上递减
故h(x)在x=4处取得最小值
从而当时原方程有唯一解的充要条件是。
设函数f(x)=x3﹣3ax+b(a≠0),已知曲线y=f(x)在点(2,f(x))处在直线y=8相切. (Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)的单调区间与极值点.
正确答案
解:(Ⅰ)求导函数,可得f′(x)=3x2﹣3a
∵曲线y=f(x)在点(2,f(x))处在直线y=8相切
∴,∴
∴a=4,b=24.
(Ⅱ)f′(x)=3(x2﹣4)=3(x+2)(x﹣2)
令f′(x)>0,可得x<﹣2或x>2;
令f′(x)<0,可得﹣2<x<2
∴函数的单调增区间为(﹣∞,﹣2),(2,+∞),单调减区间为(﹣2,2)
∴x=﹣2是函数f(x)的极大值点,x=2是函数f(x)的极小值点.
扫码查看完整答案与解析