- 导数的概念及其几何意义
- 共3697题
已知函数f(x)=mx2-2x+1+ln(x+1)(m≥1),
(1)求y=f(x)在点P(0,1)处的切线方程;
(2)设g(x)=f(x)+x-1仅有一个零点,求实数m的值;
(3)试探究函数f(x)是否存在单调递减区间?若有,设其单调区间为[t,s] ,试求s-t的取值范围?若没有,请说明理由。
正确答案
解:(1)∵点P在函数y=f(x)上,
由f x)=得:
,
故切线方程为:y=-x+1;
(2)由g(x)=f(x)+x-1=可知:定义域为(-1,+∞),
且g(0)=0,显然x=0为y=g(x)的一个零点;
则,
①当m=1时,,
即函数y=g(x)在(-1,+∞)上单调递增,g(0)=0,
故仅有一个零点,满足题意;
②当m>1时,则,列表分析:
∵x→-1时,g(x)→-∞,
∴g(x)在上有一根,这与y=g(x)仅有一根矛盾,故此种情况不符题意;
(3)假设y=f(x)存在单调区间,
由f(x)=得:
,
令,
∵,h(-1)=m+2-m-1=1>0,
∴h(x)=0在(-1,+∞)上一定存在两个不同的实数根s,t,
的解集为(t,s),
即函数f(x)存在单调区间[t,s],
则s-t=,
由m≥1可得:s-t。
已知函数f(x)=alnx-(x-1)2-ax(常数a∈R)
(1)求f(x)的单调区间;
(2)设a>0如果对于f(x)的图象上两点P1(x1,f(x1)),P2(x2,f(x2))(1< x1< x2 ),存在x0∈(x1,x2),使得f(x)的图象在x=x0处的切线m∥P1P2,求证:
正确答案
解:(1)f(x)的定义域为(0,+ ∞)
①a≥0时,f(x)的增区间为(0,1),减区间为(1,+ ∞)
③a=-2时,f(x)减区间为(0,+ ∞)
④a<-2时,f(x)的增区间为(1,),减区间为(0,1) ∪(
,+∞)
(2)由题意
又:
∵ (a>0)在(1,+ ∞)上为减函数
要证,只要证
即, 即证
令,
∴g(t)在(1,+ ∞)为增函数
∴g(t)>g(1)=0
∴,即
即
∴ 得证
已知函数f(x)=4x3+3tx2-6tx+t-1,x∈R,其中t∈R,
(Ⅰ)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)当t≠0时,求f(x)的单调区间;
(Ⅲ)证明:对任意的t∈(0,+∞),f(x)在区间(0,1)内均存在零点.
正确答案
解:(Ⅰ)解:当t=1时,
f′(0)=-6,
所以曲线y=f(x)在点(0,f(0))处的切线方程为y=-6x。
(Ⅱ)解:,
令f′(x)=0,解得x=-t或,
因为t≠0,以下分两种情况讨论:
(1)若t<0,则,当x变化时,f′(x),f(x)的变化情况如下表:
所以,f(x)的单调递增区间是;f(x)的单调递减区间是
。
(2)若t>0,则,当x变化时,f′(x),f(x)的变化情况如下表:
所以,f(x)的单调递增区间是;f(x)的单调递减区间是
;
(Ⅲ)证明:由(Ⅱ)可知,当t>0时,f(x)在内的单调递减,在
内单调递增,以下分两种情况讨论:
(1)当即t≥2时,f(x)在(0,1)内单调递减,
,
所以对任意t∈[2,+∞),f(x)在区间(0,1)内均存在零点;
(2)当即0<t<2时,f(x)在
内单调递减,在
内单调递增,
若,
,
所以f(x)在内存在零点;
若,
f(0)=t-1>0,
所以f(x)在内存在零点;
所以,对任意t∈(0,2),f(x)在区间(0,1)内均存在零点。
综上,对任意t∈(0,+∞),f(x)在区间(0,1)内均存在零点。
已知函数f(x)=ln(1+x)-ax的图象在x=1处的切线与直线x+2y-1=0平行.
(Ⅰ)求实数a的值;
(Ⅱ)若方程在[2,4]上有两个不相等的实数根,求实数m的取值范围;
(Ⅲ)设常数p≥1,数列{an}满足an+1=an+ln(p-an)(n∈N+),a1=lnp,求证:an+1≥an
正确答案
解:(I )∵f ′(x)=,
∴f ′(1)=.
由题知,
解得a=1 .
(II )由(I )有f (x )=ln (1+x )-x ,
∴原方程可整理为4ln (1+x )-x=m .
令g (x )=4ln (1+x )-x ,
得g ′(x)=,
∴当3 <x ≤4 时g' (x )<0 ,
当2 ≤x <3 时g' (x )>0 ,g' (3 )=0 ,
即g (x )在[2 ,3] 上是增函数,在[3 ,4] 上是减函数,
∴在x=3 时g (x )有最大值4ln4-3 .
∵g (2 )=4ln3-2 ,
g (4 )=4ln5-4 ,
∴g (2 )-g (4 )=.
由9e ≈24.46 <25 ,
于是
∴g (2 )<g(4 ).
∴a 的取值范围为[4ln5-4 ,4ln4-3 )
(III )由f (x )=ln (1+x )-x (x >-1 )
有f ′(x)=,
显然f' (0 )=0 ,
当x ∈(0 ,+ ∞)时,f' (x )<0 ,
当x ∈(-1 ,0 )时,f' (x )>0 ,
∴f (x )在(-1 ,0 )上是增函数,在[0 ,+ ∞)上是减函数.
∴f (x )在(-1 ,+ ∞)上有最大值f (0 ),
而f (0 )=0 ,
∴当x ∈(-1 ,+ ∞)时,f (x )≤0 ,
因此ln (1+x )≤x(* )
由已知有p >an ,
即p-an >0 ,
所以p-a n-1 >-1 .
∵an+1-an=ln (p-an )=ln (1+p-1-an ),
∴由(* )中结论可得a n+1-an ≤p-1-an ,
即an+1 ≤p-1 (n ∈N* ).
∴当n ≥2 时,an+1-an=ln (p-an )≥ln[p- (p-1 )]=0 ,
即an+1≥an .
当n=1 ,a2=a1+ln (p-lnp ),
∵lnp=ln (1+p-1 )≤p-1 ,
∴a2 ≥a1+ln[p- (p-1 )]=a1,
结论成立.
∴对n ∈N* ,an+1≥an。
已知函数.
(Ⅰ)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求正实数p的取值范围;
(Ⅲ)设函数,若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求实数p的取值范围.
正确答案
解:(I)当p=2时,函数,f(1)=2﹣2﹣2ln1=0.
,
曲线f(x)在点(1,f(1))处的切线的斜率为f'(1)=2+2﹣2=2.
从而曲线f(x)在点(1,f(1))处的切线方程为y﹣0=2(x﹣1)即y=2x﹣2.
(II).
令h(x)=px2﹣2x+p,要使f(x)在定义域(0,+∞)内是增函数,
只需h(x)≥0在(0,+∞)内恒成立.
由题意p>0,h(x)=px2﹣2x+p的图象为开口向上的抛物线,
对称轴方程为,
∴,只需
,
即p≥1时,h(x)≥0,f'(x)≥0
∴f(x)在(0,+∞)内为增函数,正实数p的取值范围是[1,+∞).
(III)∵在[1,e]上是减函数,
∴x=e时,g(x)min=2;
x=1时,g(x)max=2e,即g(x)∈[2,2e],
当p<0时,h(x)=px2﹣2x+p,其图象为开口向下的抛物线,
对称轴在y轴的左侧,且h(0)<0,
所以f(x)在x∈[1,e]内是减函数.
当p=0时,h(x)=﹣2x,因为x∈[1,e],所以h(x)<0,,
此时,f(x)在x∈[1,e]内是减函数.
∴当p≤0时,f(x)在[1,e]上单调递减f(x)max=f(1)=0<2,不合题意;
当0<p<1时,由,所以
.
又由(Ⅱ)知当p=1时,f(x)在[1,e]上是增函数,∴,不合题意;
当p≥1时,由(Ⅱ)知f(x)在[1,e]上是增函数,f(1)=0<2,
又g(x)在[1,e]上是减函数,故只需f(x)max>g(x)min,x∈[1,e],
而,
g(x)min=2,即,
解得,实数p的取值范围是
.
扫码查看完整答案与解析