- 导数的概念及其几何意义
- 共3697题
已知函数f(x)=x3+2bx2+cx-2的图象在与x轴交点处的切线方程是y=5x-10,
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设函数g(x)=f(x)+mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值。
正确答案
解:(Ⅰ)由已知,切点为(2,0),
故有f(2)=0,即4b+c+3=0,①
f′(x)=3x2+4bx+c,
由已知,得8b+c+7=0,②
联立①、②,解得c=1,b=1,
于是函数解析式为f(x);
(Ⅱ),
,
令g′(x)=0,当函数有极值时,△≥0,方程有实根,
由△=4(1-m)≥0,得m≤1,
①当m=1时,g′(x)=0有实根,在
左右两侧均有g′(x)>0,故函数g(x)=0无极值;
②m<1时,g′(x)=0有两个实根,,
当x变化时,g′(x)、g(x)的变化情况如下表:
故在m时,函数g(x)有极值,
当时,g(x)有极大值;当
时,g(x)有极小值。
已知在函数f(x)=mx3﹣x的图象上以N(1,n)为切点的切线的倾斜角为.
(1)求m、n的值;
(2)是否存在最小的正整数k,使得不等式f(x)≤k﹣1995对于x∈[﹣1,3]恒成立?如果存在,请求出最小的正整数k;如果不存在,请说明理由.
正确答案
解:(1)f'(x)=3m﹣1,
依题意,得,即1=3m﹣1,
∴,
把N(1,n)代得,得,
∴
(2)令,则
,
当时,f'(x)=2
﹣1>0,f(x)在此区间为增函数
当时,f'(x)=2
﹣1<0,f(x)在此区间为减函数
当时,f'(x)=2
﹣1>0,f(x)在此区间为增函数处取得极大值
因此,当,
要使得不等式f(x)≤k﹣1995对于x∈[﹣1,3]恒成立,则k≥15+1995=2010
所以,存在最小的正整数k=2010,使得不等式f(x)≤k﹣1995对于x∈[﹣1,3]恒成立.
函数f(x)=ax3﹣6ax2+3bx+b,其图象在x=2处的切线方程为3x+y﹣11=0.
(1)求函数f(x)的解析式;
(2)若函数y=f(x)的图象与的图象有三个不同的交点,求实数m的取值范围.
正确答案
解:(1)由题意得f'(x)=3ax2﹣12ax+3b,f'(2)=﹣3且f(2)=5,
∴即
解得a=1,b=3,
∴f(x)=x3﹣6x2+9x+3.
(2)由f(x)=x3﹣6x2+9x+3,
可得f'(x)=3x2﹣12x+9,=x2+x+3+m,
则由题意可得x3﹣6x2+9x+3=x2+x+3+m有三个不相等的实根,
即g(x)=x3﹣7x2+8x﹣m的图象与x轴有三个不同的交点,
g'(x)=3x2﹣14x+8=(3x﹣2)(x﹣4),
则g(x),g'(x)的变化情况如下表.
则函数f(x)的极大值为,极小值为g(4)=﹣16﹣m.
y=f(x)的图象与的图象有三个不同交点,
则有:解得
.
已知函数f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R。
(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)当时,求函数f(x)的单调区间与极值。
正确答案
解:(1)当a=0时,
故f′(1)=3e
所以曲线y=f(x)在点(1,f(1))处的切线的斜率为3e;
(2)
令f′(x)=0,解得x=-2a或x=a-2
由知,-2a≠a-2
以下分两种情况讨论:
(i)若,则-2a<a-2,当x变化时,f′(x)、f(x)的变化情况如下表:
所以f(x)在(-∞,-2a),(a-2,+∞)内是增函数,
在(-2a,a-2)内是减函数
函数f(x)在x=-2a处取得极大值f(-2a),且f(-2a)=3ae-2a,
函数f(x)在x=a-2处取得极小值f(a-2),且f(a-2)=(4-3a)ea-2(ii)若,则-2a>a-2,当x变化时,f′(x)、f(x)的变化情况如下表:
所以f(x)在(-∞,a-2),(-2a,+∞)内是增函数,在(a-2,-2a)内是减函数
函数f(x)在x=a-2处取得极大值f(a-2),且f(a-2)= (4-3a)ea-2函数f(x)在x=-2a处取得极小值f(-2a),且f(-2a)= 3ae-2a。
已知f(x)=ax3+bx2+cx(a≠0)在x=1和x=﹣1时取得极值,且f(1)=﹣1.
(1)试求常数a、b、c的值;
(2)试求f(x) 的单调区间;
(3)试判断x=±1时函数取极小值还是极大值,并说明理由.
正确答案
解:(1)∵f(x)=ax3+bx2+cx(a≠0)在x=1和x=﹣1时取得极值
∴f′(1)=f′(﹣1)=0,
∴3a+2b+c=0,①
3a﹣2b+c=0.②
又f(1)=﹣1,
∴a+b+c=﹣1.③
由①②③解得a=,b=0,c=﹣
.
(2)f(x)=x3﹣
x,
∴f′(x)=(x﹣1)(x+1).
令f′(x)>0,可得x<﹣1或x>1;
令f′(x)<0,可得﹣1<x<1.
∴函数的单调增区间为(﹣∞,﹣1),(1,+∞),单调减区间为(﹣1,1)
(3)由(2)知,函数的单调增区间为(﹣∞,﹣1),(1,+∞),
单调减区间为(﹣1,1)
∴x=﹣1时,f(x)有极大值;
x=1时,f(x)有极小值.
扫码查看完整答案与解析