- 导数的概念及其几何意义
- 共3697题
已知函数f(x)=x3﹣ax2+(a2﹣1)x+b(a,b∈R),其图象在点(1,f(1))处的切线方程为x+y﹣3=0.
(1)求a,b的值;
(2)求函数f(x)的单调区间,并求出f(x)在区间[﹣2,4]上的最大值.
正确答案
解:(1)f′(x)=x2﹣2ax+a2﹣1,
∵(1,f(1))在x+y﹣3=0上,
∴f(1)=2,
∵(1,2)在y=f(x)上,
∴2=﹣a+a2﹣1+b,
又f′(1)=﹣1,
∴a2﹣2a+1=0,
解得a=1,b=.
(2)∵f(x)=x3﹣x2+
,
∴f′(x)=x2﹣2x,
由f′(x)=0可知x=0和x=2是f(x)的极值点,所以有
所以f(x)的单调递增区间是(﹣∞,0)和(2,+∞),单调递减区间是(0,2).
∵f(0)=,f(2)=
,f(﹣2)=﹣4,f(4)=8,
∴在区间[﹣2,4]上的最大值为8
已知函数f(x)=ex(x2+ax-a),其中a是常数,
(1)当a=1时,求f(x)在点(1,f(1))处的切线方程;
(2)求f(x)在区间[0,+∞)上的最小值。
正确答案
(1 )由可得
,
当时,
,
,
所以 曲线在点
处的切线方程为
,即
。
(2)令,解得
或
,
当,即
时,在区间
上,
,
所以是
上的增函数,
所以的最小值为
=
;
当,即
时,
随
的变化情况如下表
由上表可知函数f(x)的最小值为。
已知函数f(x)=axlnx图象上点(e,f(e))处的切线方程与直线y=2x平行(其中e=2.71828…),g(x)=x2﹣tx﹣2.
(I)求函数f(x)的解析式;
(II)求函数f(x)在[n,n+2](n>0)上的最小值;
(III)对一切x∈(0,e],3f(x)≥g(x)恒成立,求实数t的取值范围.
正确答案
解:(I)由点(e,f(e))处的切线方程与直线2x﹣y=0平行,
得该切线斜率为2,即f'(e)=2.
又∵f'(x)=a(lnx+1),
令a(lne+1)=2,a=1,
所以f(x)=xlnx.
(II)由(I)知f'(x)=lnx+1,
显然f'(x)=0时x=e﹣1
当时f'(x)<0,所以函数
上单调递减.
当时f'(x)>0,所以函数f(x)在
上单调递增,
①时,
;
②时,函数f(x)在[n,n+2]上单调递增,
因此f(x)min=f(n)=nlnnn;
所以
(III)对一切x∈(0,e],3f(x)≥g(x)恒成立,
又g(x)=x2﹣tx﹣2,
∴3xlnx≥x2﹣tx﹣2,即.
设,
则,
由h'(x)=0得x=1或x=2,
∴x∈(0,1),h'(x)>0,h(x)单调递增,
x∈(1,2),h'(x)>0,h(x)单调递减,
x∈(2,e),h'(x)>0,h(x)单调递增,
∴h(x)极大值=h(1)=﹣1,且h(e)=e﹣3﹣2e﹣1<﹣1,
所以h(x)max=h(1)=﹣1.
因为对一切x∈(0,e],3f(x)≥g(x)恒成立,
∴t≥h(x)max=﹣1.
故实数t的取值范围为[﹣1,+∞).
如图,已知M是函数y=4﹣x2(1<x<2)的图象C上一点,过M点作曲线C的切线与x轴、y轴分别交于点A,B,O是坐标原点,求△AOB面积的最小值.
正确答案
解:∵y=4﹣x2∴y'=﹣2x.
设M(m,4﹣m2),则过M点曲线C的切线斜率k=﹣2m.
∴切线方程y﹣(4﹣m2)=﹣2m(x﹣m).
由x=0,得y=4+m2,B(0,4+m2).
由y=0设△AOB的面积为S,则
∴
令
当上为减函数;
当上为增函数;
∴
已知函数f(x)=ax+lnx(a∈R).
(Ⅰ)若a=2,求曲线y=f(x)在x=1处切线的斜率;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(
x2),求a的取值范围.
正确答案
解:(Ⅰ)由已知,则f'(1)=2+1=3.
故曲线y=f(x)在x=1处切线的斜率为3;
(Ⅱ).
①当a≥0时,由于x>0,故ax+1>0,f'(x)>0
所以,f(x)的单调递增区间为(0,+∞).
②当a<0时,由f'(x)=0,得.
在区间上,f'(x)>0,
在区间上f'(x)<0,
所以,函数f(x)的单调递增区间为,单调递减区间为
;
(Ⅲ)由已知,转化为f(x)max<g(x)min.
由x∈[0,1],得到g(x)min=g(1)=1,
由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.
当a<0时,f(x)在上单调递增,在
上单调递减,
故f(x)的极大值即为最大值,
,
所以1<﹣1﹣ln(﹣a),解得.
扫码查看完整答案与解析