- 导数的概念及其几何意义
- 共3697题
已知函数f(x)=ln(x-1)-k(x-1)+1(k ∈R),
(1)若k=2,求以M(2,f(2))为切点的曲线的切线方程;
(2)若函数f(x)≤0恒成立,确定实数k的取值范围。
正确答案
解:(1)k=2,,
,
当x=2时,f′(2)=-1,
切线方程为x+y=1;
(2),得
,
当k≤0时,f′(x)>0,函数f(x)在定义域内单调递增,f(x)≤0不恒成立;
当k>0时,函数f(x)在单调递增,在
单调递减,
当时,f(x)取最大值,
;
∴k≥1。
已知函数f(x)=x3﹣6x2+11x,其图象记为曲线C.
(1)求曲线C在点A(3,f(3))处的切线方程l;
(2)记曲线C与l的另一个交点为B(x2,f(x2)),线段AB与曲线C所围成的封闭图形的面积为S,求S的值.
正确答案
解(1)∵函数f(x)=x3﹣6x2+11x,
∴f'(x)=3x2﹣12x+11,f'(3)=2,
又f(3)=6,
∴切线方程l为y﹣6=2(x﹣3), 即y=2x.
(2)曲线C与l的另一个交点为B(x2,f(x2)),
∴得B(0,0)∴
已知F1、F2分别是椭圆(a>b>0)的左、右焦点,其左准线与x轴相交于点N,并且满足
。设A、B是上半椭圆上满足
的两点,其中λ∈
。
(1) 求此椭圆的方程及直线AB的斜率的取值范围;
(2)过A、B两点分别作此椭圆的切线,两切线相交于一点P,求证:点P在一条定直线上,并求点P的纵坐标的取值范围。
正确答案
解:(1)由于
∴
解得
从而所求椭圆的方程是
∵
∴A,B,N三点共线
而点N的坐标为(-2,0)
设直线AB的方程为
其中k为直线AB的斜率,依条件知k>0
由消去x得
即
根据条件可知
解得
设
根据韦达定理得,
又由得
∴
从而消去y2得
令
则
由于
所以
∴在区间
上是减函数
从而
即
∴
解得
而
∴
因此直线AB的斜率的取值范围是;
(2)上半椭圆的方程为
且
求导可得
所以两条切线的斜率分别为,
切线PA的方程是
即
又
从而切线PA的方程为
同理可得切线PB的方程为
由
可解得点P的坐标满足
再由得
∴
又由(1)知
∴
因此点P在定直线上,并且点P的纵坐标的取值范围是
。
函数f(x)=sin ()的导函数
的部分图像如图所示,其中,P为图像与y轴的交点,A,C为图像与x轴的两个交点,B为图像的最低点。
(1)若,点P的坐标为(0,
),则
( );
(2)若在曲线段与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为( )。
正确答案
(1)3;(2)
如图,在平面直角坐标系xOy中,过y轴正方向上一点C(0,c)任作一直线,与抛物线y=x2相交于AB两点,一条垂直于x轴的直线,分别与线段AB和直线l:y=-c交于P,Q。
(1)若,求c的值;
(2)若P为线段AB的中点,求证:QA为此抛物线的切线;
(3)试问(2)的逆命题是否成立?说明理由。
正确答案
解:(1)设过C点的直线为
所以
即
设
,
因为
所以
即,
所以
即
所以(舍去c=-1)。
(2)设过Q的切线为,
所以
即
他与的交点为M
又
所以Q
因为
所以
所以M
所以点M和点Q重合,也就是QA为此抛物线的切线。
(3)(2)的逆命题是成立,由(2)可知Q,
因为PQ⊥x轴,
所以
因为
所以P为AB的中点。
扫码查看完整答案与解析