- 导数的概念及其几何意义
- 共3697题
已知函数y=xlnx+1.
(1)求这个函数的导数;
(2)求这个函数的图象在点x=1处的切线方程.
正确答案
(1)(2)
试题分析:(1)按公式直接求导即可。(2)根据导数的几何意义可求其切线斜率,用点斜式可求切线方程。
试题解析:解:(1),
∴
即 4分
(2) 6分
又当时,
,所以切点为
8分
∴切线方程为,即
12分.
已知函数f(x)=x2-(1+2a)x+aln x(a为常数).
(1)当a=-1时,求曲线y=f(x)在x=1处切线的方程;
(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.
正确答案
(1)y=2x.(2)①当0<a<时,f(x)的单调增区间是(0,a)和
,单调减区间是
,②当a=
时,f(x)在区间(0,1)上是单调增函数.③当
<a<1时,f(x)的单调增区间是
和(a,1),单调减区间是
,④当a≥1时,f(x)的单调增区间是
,单调减区间是
(1)当a=-1时,f(x)=x2+x-ln x,则f′(x)=2x+1-,(2分)
所以f(1)=2,且f′(1)=2.
所以曲线y=f(x)在x=1处的切线的方程为:y-2=2(x-1),
即:y=2x.(6分)
(2)由题意得f′(x)=2x-(1+2a)+=
(x>0),
由f′(x)=0,得x1=,x2=a,(8分)
①当0<a<时,由f′(x)>0,又知x>0得0<x<a或
<x<1
由f′(x)<0,又知x>0,得a<x<,
所以函数f(x)的单调增区间是(0,a)和,单调减区间是
,(10分)
②当a=时,f′(x)=
≥0,且仅当x=
时,f′(x)=0,
所以函数f(x)在区间(0,1)上是单调增函数.(11分)
③当<a<1时,由f′(x)>0,又知x>0得0<x<
或a<x<1,
由f′(x)<0,又知x>0,得<x<a,
所以函数f(x)的单调增区间是和(a,1),单调减区间是
,(13分)
④当a≥1时,由f′(x)>0,又知x>0得0<x<,
由f′(x)<0,又知x>0,得<x<1,
所以函数f(x)的单调增区间是,单调减区间是
.(16分)
若函数(
)有两个极小值点,则实数
的取值范围是 .
正确答案
已知f(x)=x2+bx+c为偶函数,曲线y=f(x)过点(2,5),g(x)=(x+a)f(x).
(1)求曲线y=g(x)有斜率为0的切线,求实数a的取值范围;
(2)若当x=-1时函数y=g(x)取得极值,确定y=g(x)的单调区间.
正确答案
(1)∵f(x)=x2+bx+c为偶函数,故f(-x)=f(x)即有
(-x)2+b(-x)+c=x2+bx+c解得b=0
又曲线y=f(x)过点(2,5),得22+c=5,有c=1
∵g(x)=(x+a)f(x)=x3+ax2+x+a从而g′(x)=3x2+2ax+1,
∵曲线y=g(x)有斜率为0的切线,故有g′(x)=0有实数解.即3x2+2ax+1=0有实数解.
此时有△=4a2-12≥0解得
a∈(-∞,-]∪[
,+∞)所以实数a的取值范围:a∈(-∞,-
]∪[
,+∞);
(2)因x=-1时函数y=g(x)取得极值,故有g′(-1)=0即3-2a+1=0,解得a=2
又g′(x)=3x2+4x+1=(3x+1)(x+1)令g′(x)=0,得x1=-1,x2=-
当x∈(-∞,-1)时,g′(x)>0,故g(x)在(-∞,-1)上为增函数
当x∈(-1,-)时,g′(x)<0,故g(x)在(-1,-
)上为减函数
当x∈(-,+∝)时,g′(x)>0,故g(x)在( -
,+∝)上为增函数.
已知函数f(x)=ax2-(a+1)x+lnx.
(I)当a=2时,求曲线y=f(x)在点(2,f(2))处切线的斜率;
(II)当a>0时,求函数f(x)的单调区间.
正确答案
(1)当a=2时,f(x)=ax2-(a+1)x+lnx,
f′(x)=2x2-3+,故f′(2)=
.
所以曲线y=f(x)在点(2,f(2))处的切线的斜率为.
(2)f′(x)=ax2-(a+1)+.
令f′(x)=0,解得x=1,或x=.
因为a>0,x>0.
①当0<a<1时,
若x∈(0,1)时,f′(x)>0,函数f(x)单调递增;
若x∈(1,)时,f′(x)0,<函数f(x)单调递减;
若x∈(,+∞)时,f′(x)>0,函数f(x)单调递增;
②当a=1时,
若x∈(0,+∞)时,f′(x)>0,函数f(x)单调递增;
③当a>1时,
若x∈(0,)时,f′(x)>0,函数f(x)单调递增;
若x∈(,1)时,f′(x)0,<函数f(x)单调递减;
若x∈(1,+∞)时,f′(x)>0,函数f(x)单调递增.
扫码查看完整答案与解析