- 导数的概念及其几何意义
- 共3697题
已知函数f(x)=+
-1(a∈R)
(1)求函数f(x)的图象在点(1,f(1))处的切线方程;
(2)若f(x)≤0在区间(0,e2]上恒成立,求实数a的取值范围.
正确答案
(1)因为函数f(x)的定义域为(0,+∞),导函数f′(x)=,
∴k=f′(1)=1-a,
又f(1)=a-1,即切点坐标为(1,a-1),
所以,函数f(x)的图象在点(1,f(1))处的切线方程为:
y-(a-1)=(1-a)(x-1),即y=(1-a)x+2(a-1).
(2)结合(1),令f′(x)=0得x=e1-a,由对数函数的单调性知:
当x∈(0,e1-a)时,f′(x)>0,f(x)是增函数;
当x∈(e1-a,+∞)时,f′(x)<0,f(x)是减函数.
(ⅰ)当e1-a<e2时,a>-1时,f(x)max=f(e1-a)=ea-1-1,
令ea-1-1≤0,解得a≤1,即-1<a≤1,
(ⅱ)当e1-a≥e2即a≤-1时,f(x)在(0,e2]上是增函数,
∴f(x)在(0,e2]上的最大值为f(e2)=-1,
令-1≤0,解得a≤e2-2,即a≤-1,
综上可知,实数a的取值范围是a≤1.
如果曲线y=x3+x-10的某一切线与直线y=4x+3平行,求切点坐标与切线方程.
正确答案
∵切线与直线y=4x+3平行,斜率为4
又切线在点x0的斜率为y′|_x0
∵3x02+1=4,∴x0=±1,有,或
,
∴切点为(1,-8)或(-1,-12),
切线方程为y+8=4(x-1)或y+12=4(x-1),
即y=4x-12或y=4x-8.
(本小题满分14分)
已知二次函数
的图象经过点
、
与点
,设函数
在
和
处取到极值,其中
,
。
(1)求的二次项系数
的值;
(2)比较的大小(要求按从小到大排列);
(3)若,且过原点存在两条互相垂直的直线与曲线
均相切,求
。
正确答案
解:(1)由题意可设,
又函数图象经过点,则
,得
.……… 2分
(2)由(1)可得。
所以,
, ………… 4分
函数在
和
处取到极值,
故, ………… 5分
,
………… 7分
又,故
。 …… 8分
(3)设切点,则切线的斜率
又,所以切线的方程是
…… 9分
又切线过原点,故
所以,解得
,或
。 ………… 10分
两条切线的斜率为,
,
由,得
,
,
,
………………………… 12分
所以,
又两条切线垂直,故,所以上式等号成立,有
,且
。
所以。 ………… 14分
略
(本小题满分l4分)
已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4;
(Ⅲ)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围.
正确答案
解: (I)f′(x)=3ax2+2bx-3,依题意,f′(1)=f′(-1)=0,
即
解得a=1,b=0.
∴f(x)=x3-3x.
(II)∵f(x)=x3-3x,∴f′(x)=3x2-3=3(x+1)(x-1),
当-1
fmax(x)=f(-1)=2,fmin(x)=f(1)=-2
∵对于区间[-1,1]上任意两个自变量的值x1,x2,
都有|f(x1)-f(x2)|≤|fmax(x) -fmin(x)|
|f(x1)-f(x2)|≤|fmax(x)-fmin(x)|=2-(-2)=4
(III)f′(x)=3x2-3=3(x+1)(x-1),
∵曲线方程为y=x3-3x,∴点A(1,m)不在曲线上.
设切点为M(x0,y0),则点M的坐标满足
因,故切线的斜率为
,
整理得.
∵过点A(1,m)可作曲线的三条切线,
∴关于x0方程=0有三个实根.
设g(x0)= ,则g′(x0)=6
,
由g′(x0)=0,得x
0=0或x0=1.
∴g(x0)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减.
∴函数g(x0)= 的极值点为x0=0,x0=1
∴关于x0方程=0有三个实根的充要条件是
,解得-3
故所求的实数a的取值范围是-3
略
函数的图象在点
处的切线方程为
正确答案
略
扫码查看完整答案与解析