热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 14 分

已知函数

24.设.求方程的根

25. 若对于任意,不等式恒成立,求实数的最大值;

26.若,函数有且只有1个零点,求的值.

第(1)小题正确答案及相关解析

正确答案

解析

,由可得

,即,则

考查方向

指数函数、基本不等式、利用导数研究函数单调性及零点

解题思路

易错点

基本不等式的应用,分类讨论思想,函数与方程思想

第(2)小题正确答案及相关解析

正确答案

解析

由题意得恒成立,

,则由可得

此时恒成立,即恒成立

,当且仅当时等号成立,

因此实数的最大值为

考查方向

指数函数、基本不等式、利用导数研究函数单调性及零点

解题思路

易错点

基本不等式的应用,分类讨论思想,函数与方程思想

第(3)小题正确答案及相关解析

正确答案

解析

可得,令,则递增,

,因此

因此时,,则

时,,则

递减,递增,因此最小值为

① 若时,,则

logb2时,,则

因此时,,因此有零点,

时,,因此有零点,

至少有两个零点,与条件矛盾;

② 若,由函数有且只有1个零点,最小值为

可得

因此

因此,即,即

因此,则

考查方向

指数函数、基本不等式、利用导数研究函数单调性及零点

解题思路

易错点

基本不等式的应用,分类讨论思想,函数与方程思想

1
题型:填空题
|
填空题 · 5 分

14.设函数的图象上存在两点,使得是以为直角顶点的直角三角形(其中为坐标原点),且斜边的中点恰好在轴上,则实数的取值范围是________.

正确答案

解析

根据条件知P, Q的横坐标互为相反数,不妨设P(-t, t3+t2), B(t, f(t)(t>0)

若t<e,则f(t)=-t3+t2,

由∠POQ是直角得=0,即-t2+( t3+t2)(-t3+t2)=0,

即t4-t2+1=0.此时无解;

若t≥1,则f(t)=alnx,.由于PQ的中点在y轴上,且∠POQ是直角,

所以Q点不可能在x轴上,即t≠1.

同理=0,  即-t2+( t3+t2)·alnx=0,

整理后得 实数a的取值范围是

考查方向

本题主要考查了分类讨论的思想,在近几年的各省高考题出现的频率较高,常与函数单调性、值域、奇偶性、向量等知识点交汇命题。

解题思路

利用垂直的条件即数量积为0是本题破题的关键,同时对变量进行分类讨论,转化为求函数的值域问题。

易错点

1、是以为直角顶点的直角三角形这个条件如何准确地转化。

2、分类讨论的标准,如何不重复、不遗漏。

知识点

利用导数研究函数的单调性利用导数求参数的取值范围
1
题型: 单选题
|
单选题 · 5 分

12.若函数存在极值,则实数的取值范围是(   )

A

B

C

D

正确答案

A

解析

由题意得:,因函数存在极值,所以上有两个相异实数根,即函数与函数有两个不同的交点,作出两个函数的图像,当时,如图一所示,显然存在,使得递减,在上递增,故此时函数存在极小值;当时,如图二所示,易知,当两个函数相切时,可求得,综上可知实数的取值范围是,故选择A选项。

考查方向

本题主要考查了利用导数研究函数的极值问题,在近几年的各省高考题出现的频率较高,常与函数单调性、极值、最值等知识点交汇命题。

解题思路

先求导,由导数与极值的关系求出参数的范围。

易错点

不知导数与极值的关系导致本题出错。

知识点

利用导数研究函数的单调性利用导数求函数的极值利用导数求参数的取值范围
1
题型:简答题
|
简答题 · 16 分

19.已知函数处的切线方程为.

(1)求的值;

(2)若对任意的,都有成立,求的取值范围;

(3)若函数的两个零点为,试判断的正负,并说明理由.

正确答案

(1)

(2)

(3)

解析

试题分析:本题属于导数应用中的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求(2)要注意对参数的讨论(3)涉及恒成立问题,转化成求函数的最值,这种思路是一般解法,往往要利用“分离参数法”.涉及对数函数,要特别注意函数的定义域.

(1)由题意得,因函数在处的切线方程为

所以,得.

(2)由(1)知对任意都成立,

所以,即对任意都成立,从而.

又不等式整理可得,令

所以,得

时,,函数上单调递增,

同理,函数上单调递减,所以

综上所述,实数的取值范围是.

(3)结论是.

证明:由题意知函数,所以

易得函数单调递增,在上单调递减,所以只需证明即可.

因为是函数的两个零点,所以,相减得

不妨令,则,则,所以

即证,即证

因为,所以上单调递增,所以

综上所述,函数总满足成立.

考查方向

本题考查了利用导数的几何意义,利用导数求含参数的函数单调区间,分类讨论讨论点大体可以分成以下几类:

1、根据判别式讨论;

2、根据二次函数的根的大小;

3、定义域由限制时,根据定义域的隐含条件;

4、求导形式复杂时取部分特别常常只需要转化为一个二次函数来讨论;

5、多次求导求解等.

解题思路

本题考查导数的性质,解题步骤如下:

1、求导,然后解导数不等式,算极值。

2、对参数分类讨论求得单调区间。

3、涉及恒成立问题,转化成求函数的最值,利用“分离参数法”

易错点

1、第二问中恒成立问题,转化为求函数的最值,最值如何求解。

2、第三问中构造函数不正确得不到正确结论。

知识点

导数的几何意义利用导数研究函数的单调性利用导数求函数的极值利用导数求参数的取值范围
1
题型: 单选题
|
单选题 · 5 分

12.函数f(x)=-3x+1对于x∈[0,1]总有f(x)≥0成立,则a的取值范围是

A[2,+∞)

B[4,+∞)

C{2}

D[2,4]

正确答案

B

解析

,而要满足f(x)=-3x+1对于x∈[0,1]总有f(x)≥0成立,f(0)=1≥0满足,f(1)=a-2≥0,所以a≥2,然后由=0,得x=,故满足f()=-+1≥0,解之得a的取值范围是[4,+∞),所以选B.

考查方向

函数的导数的应用。

解题思路

转化为求函数在区间[0,1]上的最小值。

易错点

恒成立的问题不会转化。

知识点

利用导数求函数的最值利用导数求参数的取值范围
下一知识点 : 生活中的优化问题举例
百度题库 > 高考 > 文科数学 > 利用导数求参数的取值范围

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题