- 利用导数求参数的取值范围
- 共134题
已知函数.
24.设,
.求方程
的根
25. 若对于任意,不等式
恒成立,求实数
的最大值;
26.若,
,函数
有且只有1个零点,求
的值.
正确答案
解析
,由
可得
,
则,即
,则
,
;
考查方向
解题思路
易错点
基本不等式的应用,分类讨论思想,函数与方程思想
正确答案
;
解析
由题意得恒成立,
令,则由
可得
,
此时恒成立,即
恒成立
∵时
,当且仅当
时等号成立,
因此实数的最大值为
.
考查方向
解题思路
易错点
基本不等式的应用,分类讨论思想,函数与方程思想
正确答案
;
解析
,
,
由,
可得
,令
,则
递增,
而,因此
时
,
因此时,
,
,则
;
时,
,
,则
;
则在
递减,
递增,因此
最小值为
,
① 若,
时,
,
,则
;
logb2时,
,
,则
;
因此且
时,
,因此
在
有零点,
且
时,
,因此
在
有零点,
则至少有两个零点,与条件矛盾;
② 若,由函数
有且只有1个零点,
最小值为
,
可得,
由,
因此,
因此,即
,即
,
因此,则
.
考查方向
解题思路
易错点
基本不等式的应用,分类讨论思想,函数与方程思想
14.设函数的图象上存在两点
,使得
是以
为直角顶点的直角三角形(其中
为坐标原点),且斜边的中点恰好在
轴上,则实数
的取值范围是________.
正确答案
解析
根据条件知P, Q的横坐标互为相反数,不妨设P(-t, t3+t2), B(t, f(t)(t>0)
若t<e,则f(t)=-t3+t2,
由∠POQ是直角得=0,即-t2+( t3+t2)(-t3+t2)=0,
即t4-t2+1=0.此时无解;
若t≥1,则f(t)=alnx,.由于PQ的中点在y轴上,且∠POQ是直角,
所以Q点不可能在x轴上,即t≠1.
同理=0, 即-t2+( t3+t2)·alnx=0,
整理后得 实数a的取值范围是
考查方向
解题思路
利用垂直的条件即数量积为0是本题破题的关键,同时对变量进行分类讨论,转化为求函数的值域问题。
易错点
1、是以
为直角顶点的直角三角形这个条件如何准确地转化。
2、分类讨论的标准,如何不重复、不遗漏。
知识点
12.若函数存在极值,则实数
的取值范围是( )
正确答案
解析
由题意得:,因函数
存在极值,所以
在
上有两个相异实数根,即函数
与函数
有两个不同的交点,作出两个函数的图像,当
时,如图一所示,显然存在
,使得
在
递减,在
上递增,故此时函数存在极小值;当
时,如图二所示,易知,当两个函数相切时,可求得
,综上可知实数
的取值范围是
,故选择A选项。
考查方向
解题思路
先求导,由导数与极值的关系求出参数的范围。
易错点
不知导数与极值的关系导致本题出错。
知识点
19.已知函数在
处的切线方程为
.
(1)求的值;
(2)若对任意的,都有
成立,求
的取值范围;
(3)若函数的两个零点为
,试判断
的正负,并说明理由.
正确答案
(1)
(2)
(3).
解析
试题分析:本题属于导数应用中的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求(2)要注意对参数的讨论(3)涉及恒成立问题,转化成求函数的最值,这种思路是一般解法,往往要利用“分离参数法”.涉及对数函数,要特别注意函数的定义域.
(1)由题意得,因函数在
处的切线方程为
,
所以,得
.
(2)由(1)知对任意
都成立,
所以,即
对任意
都成立,从而
.
又不等式整理可得,令
,
所以,得
,
当时,
,函数
在
上单调递增,
同理,函数在
上单调递减,所以
,
综上所述,实数的取值范围是
.
(3)结论是.
证明:由题意知函数,所以
,
易得函数在
单调递增,在
上单调递减,所以只需证明
即可.
因为是函数
的两个零点,所以
,相减得
,
不妨令,则
,则
,所以
,
,
即证,即证
,
因为,所以
在
上单调递增,所以
,
综上所述,函数总满足
成立.
考查方向
本题考查了利用导数的几何意义,利用导数求含参数的函数单调区间,分类讨论讨论点大体可以分成以下几类:
1、根据判别式讨论;
2、根据二次函数的根的大小;
3、定义域由限制时,根据定义域的隐含条件;
4、求导形式复杂时取部分特别常常只需要转化为一个二次函数来讨论;
5、多次求导求解等.
解题思路
本题考查导数的性质,解题步骤如下:
1、求导,然后解导数不等式,算极值。
2、对参数分类讨论求得单调区间。
3、涉及恒成立问题,转化成求函数的最值,利用“分离参数法”
易错点
1、第二问中恒成立问题,转化为求函数的最值,最值如何求解。
2、第三问中构造函数不正确得不到正确结论。
知识点
12.函数f(x)=-3x+1对于x∈[0,1]总有f(x)≥0成立,则a的取值范围是
正确答案
解析
,而要满足f(x)=
-3x+1对于x∈[0,1]总有f(x)≥0成立,f(0)=1≥0满足,f(1)=a-2≥0,所以a≥2,然后由
=0,得x=
,故满足f(
)=
-
+1≥0,解之得a的取值范围是[4,+∞),所以选B.
考查方向
解题思路
转化为求函数在区间[0,1]上的最小值。
易错点
恒成立的问题不会转化。
知识点
扫码查看完整答案与解析