- 圆锥曲线中的探索性问题
- 共34题
21.已知椭圆:
(
)的右焦点
,右顶点
,且
.
(1)求椭圆的标准方程;
(2)若动直线:
与椭圆
有且只有一个交点
,且与直线
交于点
,问:是否存在一个定点
,使得
.若存在,求出点
坐标;若不存在,说明理由.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
21.在平面直角坐标系中,已知椭圆C:
的左焦点为
,且椭圆C的离心率
.
(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为,Q是椭圆C上异于
的任一点,直线
分别交x轴于点S,T,证明:
为定值,并求出该定值;
(3)在椭圆C上,是否存在点,使得直线
与圆
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
22.已知抛物线,过点
的直线与抛物线交于
、
两点,且直线与
轴交于点
.
(1)求证:,
,
成等比数列;
(2)设,
,试问
是否为定值,若是,求出此定值;若不是,请说明理由.
正确答案
解:(1)设直线的方程为:,
联立方程可得得:
①
设,
,
,则
,
②
,
而,∴
,
即,
、
成等比数列
(2)由,
得,
,
即得:,
,则
由(1)中②代入得,故
为定值且定值为
解析
解析已在路上飞奔,马上就到!
知识点
20.设椭圆的左、右焦点分别为F1、F2,下顶点为A,离心率
,若直线l:
过点A.
(I)求椭圆C的方程;
(II)在(I)的条件下,过右焦点F2作斜率为k的直线与椭圆C交于M、N两点,在x轴上是否存在点p(m,0),使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围;如果不存在,说明理由.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
21.在平面直角坐标系中,已知椭圆C:
的左焦点为
,且椭圆C的离心率
.
(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为,Q是椭圆C上异于
的任一点,直线
分别交x轴于点S,T,证明:
为定值,并求出该定值;
(3)在椭圆C上,是否存在点,使得直线
与圆
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析