热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

21.已知椭圆)的右焦点,右顶点,且

(1)求椭圆的标准方程;

(2)若动直线与椭圆有且只有一个交点,且与直线交于点,问:是否存在一个定点,使得.若存在,求出点坐标;若不存在,说明理由.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程直线与圆锥曲线的综合问题圆锥曲线的定点、定值问题圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 13 分

21.在平面直角坐标系中,已知椭圆C:的左焦点为,且椭圆C的离心率.

(1)求椭圆C的方程;

(2)设椭圆C的上下顶点分别为,Q是椭圆C上异于的任一点,直线分别交x轴于点S,T,证明:为定值,并求出该定值;

(3)在椭圆C上,是否存在点,使得直线与圆相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程直线与圆锥曲线的综合问题圆锥曲线的定点、定值问题圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 12 分

22.已知抛物线,过点的直线与抛物线交于两点,且直线与轴交于点.

(1)求证:成等比数列;

(2)设,试问是否为定值,若是,求出此定值;若不是,请说明理由.

正确答案

解:(1)设直线的方程为:

联立方程可得得:               ①

,则  ②

,∴

成等比数列             

(2)由得,

即得:,则

由(1)中②代入得,故为定值且定值为

解析

解析已在路上飞奔,马上就到!

知识点

向量在几何中的应用等比数列的判断与证明抛物线的标准方程和几何性质直线与圆锥曲线的综合问题圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 12 分

20.设椭圆的左、右焦点分别为F1、F2,下顶点为A,离心率,若直线l:过点A.

(I)求椭圆C的方程;

(II)在(I)的条件下,过右焦点F2作斜率为k的直线与椭圆C交于M、N两点,在x轴上是否存在点p(m,0),使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围;如果不存在,说明理由.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程直线与圆锥曲线的综合问题圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 13 分

21.在平面直角坐标系中,已知椭圆C:的左焦点为,且椭圆C的离心率.

(1)求椭圆C的方程;

(2)设椭圆C的上下顶点分别为,Q是椭圆C上异于的任一点,直线分别交x轴于点S,T,证明:为定值,并求出该定值;

(3)在椭圆C上,是否存在点,使得直线与圆相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程直线与圆锥曲线的综合问题圆锥曲线中的范围、最值问题圆锥曲线的定点、定值问题圆锥曲线中的探索性问题
下一知识点 : 直线、圆及圆锥曲线的交汇问题
百度题库 > 高考 > 文科数学 > 圆锥曲线中的探索性问题

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题