- 直线与椭圆的位置关系
- 共59题
已知椭圆:
(
)过点
,其左、右焦点分别为
,且
。
(1)求椭圆的方程;
(2)若是直线
上的两个动点,且
,则以
为直径的圆
是否过定点?请说明理由。
正确答案
见解析
解析
(1)设点的坐标分别为
,
则
故,可得
, …………………2分
所以,…………………4分
故,
所以椭圆的方程为
, ……………………………6分
(2)设的坐标分别为
,则
,
又,可得
,即
, …………………8分
又圆的圆心为
半径为
,
故圆的方程为
,
即,
也就是, ……………………11分
令,可得
或2,
故圆必过定点
和
, ……………………13分
(另法:(1)中也可以直接将点坐标代入椭圆方程来进行求解;(2)中可利用圆C直径的两端点直接写出圆
的方程)
知识点
设P是圆x2+y2=4上的任意一点,过P作x轴的垂线段PD,D为垂足, M是线段PD上的点,且满足|DM|=m|PD|(0<m<1),当点P在圆上运动时,记M的轨迹为曲线C.
(1)求曲线C的方程;
(2)过曲线C的左焦点F作斜率为的直线l交曲线C于A、B两点,点Q满足
,是否存在实数m,使得点Q在曲线C上,若存在,求出m的值,若不存在,请说明理由。
正确答案
见解析
解析
(1)如图设M(x,y)、P(x0,y0),则由|DM|=m|PD|(0<m<1)得
x= x0,|y|=m| y0|,即
∵,∴
即为曲线C的方程。………6′
(2)设,则
由得:
………8′
设A(x1,y1)、B(x2,y2).
则,
.
∴,………9′
∵
即Q点坐标为,将Q点代入
,得
.
∴存在当时,Q点在曲线C上。………13′
知识点
已知椭圆的左右焦点分别是
,直线
与椭圆
交于两点
且当
时,M是椭圆
的上顶点,且△
的周长为6.
(1)求椭圆 的方程;
(2)设椭圆的左顶点为A,直线
与直线:
分别相交于点
,问当
变化时,以线段
为直径的圆被
轴截得的弦长是否为定值?若是,求出这个定值,若不是,说明理由。
正确答案
见解析
解析
(1)当时,直线的倾斜角为
,所以:
…………3分
解得:,……5分 所以椭圆方程是:
;……6分
(2)当时,直线
的方程为:
,此时,M,N点的坐标分别是
,又
点坐标是(-2,0),由图可以得到P,Q两点坐标分别是(4,3),(4,-3),以PQ为直径的圆过右焦点,被
轴截得的弦长为6,猜测当
变化时,以PQ为直径的圆恒过焦点
,被
轴截得的弦长为定值6,……………………8分
证明如下:设点M,N点的坐标分别是,则直线
的方程是:
,
所以点的坐标是
,同理,点
的坐标是
,…………………9分
由方程组得到:
,
所以:,…………………11分
从而:
所以:以为直径的圆一定过右焦点
,被
轴截得的弦长为定值6。……………13分
知识点
椭圆的左右焦点分别为
,上顶点为
,已知椭圆
过点
,且
。
(1)求椭圆的方程;
(2)若椭圆上两点关于点
对称,求
。
正确答案
见解析
解析
(1)因为椭圆过点
,所以
,解得
又以为直径的圆恰好过右焦点
,所以
又
得,
,所以
而,所以
得
故椭圆的方程是
。
(2)法一:设点的坐标分别为
,
则,且
由得:
所以所在直线的方程为
将代入
得
法二:设点的坐标分别为
则
两等式相减得
将代入
得
知识点
若圆在矩阵
对应的变换下变成椭圆
.
(1)求a,b的值;
(2)判断矩阵A是否可逆,如果可逆,求矩阵A的逆矩阵A-1,如不可逆,说明理由.
正确答案
见解析
解析
(1)设点为圆C:
上任意一点,经过矩阵A变换后对应点为
,
则,所以
因为点在椭圆
:
上,所以
, ………………2分
又圆方程为,故
,即
,又
,
,所以
,
. ……4分
(2),因为
,所以矩阵A可逆,………………5分
所以 ………………………………7分
知识点
扫码查看完整答案与解析