热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

如图,在平面直角坐标系中,已知是椭上的一点,从原点向圆作两条切线,分别交椭圆于点

24.若点在第一象限,且直线互相垂直,求圆的方程;

25.若直线的斜率存在,并记为,求的值;

第(1)小题正确答案及相关解析

正确答案

(1)

解析

(1)由圆的方程知圆的半径,因为直线互相垂直,且和圆相切,所以,即   ①又点在椭圆上,所以    ②

联立①②,解得,所以,所求圆的方程为

考查方向

本题主要考查椭圆和圆的性质、直线和圆的位置关系等知识,意在考查考生的计算能力及逻辑推理能力。

解题思路

先根据题中条件求出圆心的坐标,后即可得到圆的方程;

易错点

不知题中给出的直线是切线,且互相垂直如何使用导致不能得到关于圆心的方程;

第(2)小题正确答案及相关解析

正确答案

(2)

解析

(2)因为直线都与圆相切,所以,化简得,因为点在椭圆上,所以

,所以

考查方向

本题主要考查椭圆和圆的性质、直线和圆的位置关系等知识,意在考查考生的计算能力及逻辑推理能力。

解题思路

根据直线和圆相切得,化简得到,后消元即可得到答案。

易错点

不会化简得到

1
题型:简答题
|
简答题 · 12 分

已知曲线C的方程是(m>0,n>0),且曲线C过A(),B(,  )两点,O为坐标原点.

23.求曲线C的方程;

24.设M(x1,y1),N(x2,y2)是曲线C上两点,向量p=(x1y1),q=(x2y2),且p·q=0,若直线MN过(0,),求直线MN的斜率.

第(1)小题正确答案及相关解析

正确答案

见解析

解析

解:(1)由题可得:,解得

所以曲线方程为

考查方向

本题考察了曲线方程的求解,考察了直线与曲线的位置关系

解题思路

1)根据题意联立解方程求出曲线方程

2)写出直线方程,与曲线联立,得到韦达定理

3)根据p·q=0,得到x1,x2的关系

4)解方程得到结果

易错点

本题较简单,一般在计算出错和对p·q=0处理出错

第(2)小题正确答案及相关解析

正确答案

见解析

解析

解:

(2)设直线的方程为,代入椭圆方程为得:

=

考查方向

本题考察了曲线方程的求解,考察了直线与曲线的位置关系

解题思路

1)根据题意联立解方程求出曲线方程

2)写出直线方程,与曲线联立,得到韦达定理

3)根据p·q=0,得到x1,x2的关系

4)解方程得到结果

易错点

本题较简单,一般在计算出错和对p·q=0处理出错

1
题型:填空题
|
填空题 · 4 分

15.椭圆的右焦点F(c,0)关于直线的对称点Q在椭圆上,则椭圆的离心率是           

正确答案

解析

试题分析:利用点F关于直线的对称点Q在椭圆上,由a,b,c的关系列方程求出椭圆的离心率。

Q(mn),由题意可得,解得:,代入椭圆方程可得:,整理可得

可得,.即

可得,解得

故答案为:.

考查方向

本题考查了椭圆的方程简单性质的应用、对称知识和计算能力,属于中等题.

解题思路

设出Q的坐标,利用对称知识,集合椭圆方程推出椭圆几何量之间的关系,然后求解离心率即可.

易错点

点关于直线的对称点的求法,.

知识点

椭圆的定义及标准方程椭圆的几何性质
1
题型:简答题
|
简答题 · 12 分

20. 如图,已知椭圆 ,离心率是椭圆上的任一点,从原点向圆作两条切线,分别交椭圆于点

(Ⅰ)若过点的直线与原点的距离为,求椭圆方程;

(Ⅱ)在(Ⅰ)的条件下,若直线的斜率存在,并记为.试问是否为定值?若是,求出该值;若不是,说明理由.

正确答案

(1);(2)为定值。

解析

试题分析:本题属于直线与圆锥曲线的问题,

(1)由已知条件构造方程组求解(2)用设而不求的方法来解决.

(Ⅰ)因为离心率,所以,而        所以,即   ①                                                           设经过点的直线方程为

因为直线与原点的距离为

所以,整理得:②                                          由①②得                                                                                        所以椭圆的方程为

(Ⅱ)解:因为直线, 与圆M相切,由直线和圆相切的条件: ,可得,                                                  平方整理,可得,
,                                                 所以是方程的两个不相等的实数根, ,因为点在椭圆C上,所以,即,所以为定值;

考查方向

本题考查了直线与圆锥曲线的问题.

解题思路

本题考查直线与圆锥曲线的问题,解题步骤如下:

由已知条件构造方程组求解。

用设而不求的方法来解决。

易错点

不会利用设而不求的思想来解答。

知识点

椭圆的几何性质椭圆的相关应用圆锥曲线的定点、定值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

如图,椭圆E(a>b>0)的离心率是,点(0,1)在短轴CD上,且=-1

25.求椭圆E的方程;

26.设O为坐标原点,过点P的动直线与椭圆交于AB两点.是否存在常数λ,使得为定值?若存在,求λ的值;若不存在,请说明理由.

第(1)小题正确答案及相关解析

正确答案

.

解析

(I)由已知,点CD的坐标分别为(0,-b),(0,b)

又点P的坐标为(0,1),且=-1

于是,解得a=2,b

所以椭圆E方程为.

考查方向

本题主要考查椭圆的标准方程、直线方程等基础知识,意在考查推理论证能力、运算求解能力,数形结合、化归与转化、特殊与一般、分类与整合等数学思想.

解题思路

1.第(1)问直接根据题中给出的条件求解即可;

易错点

1.第(1)问的运算出错;

第(2)小题正确答案及相关解析

正确答案

λ=-1

解析

当直线AB斜率存在时,设直线AB的方程为ykx+1

AB的坐标分别为(x1y1),(x2y2)

联立,得(2k2+1)x2+4kx-2=0

其判别式△=(4k)2+8(2k2+1)>0

所以

从而x1x2y1y2λ[x1x2+(y1-1)(y2-1)]

=(1+λ)(1+k2)x1x2k(x1x2)+1

=-

所以,当λ=1时,-=-3

此时,=-3为定值

当直线AB斜率不存在时,直线AB即为直线CD

此时=-2-1=-3

故存在常数λ=-1,使得为定值-3.

考查方向

本题主要考查椭圆的标准方程、直线方程等基础知识,意在考查推理论证能力、运算求解能力,数形结合、化归与转化、特殊与一般、分类与整合等数学思想.

解题思路

.第(2)问先联立消元导出韦达定理后代人要求的式子得到定值即可。

易错点

第(2)问的运算出错;第(2)问的=-不会计算如何为定值。

下一知识点 : 椭圆的相关应用
百度题库 > 高考 > 文科数学 > 椭圆的几何性质

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题