热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 14 分

直线y=kx+m(m≠0)与椭圆W:+y2=1相交于A,C两点,O是坐标原点。

(1)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;

(2)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形。

正确答案

见解析

解析

(1)因为四边形OABC为菱形,所以AC与OB相互垂直平分。

所以可设A,代入椭圆方程得,即.

所以|AC|=.

(2)假设四边形OABC为菱形。

因为点B不是W的顶点,且AC⊥OB,所以k≠0.

消y并整理得(1+4k2)x2+8kmx+4m2-4=0.

设A(x1,y1),C(x2,y2),

.

所以AC的中点为M.

因为M为AC和OB的交点,且m≠0,k≠0,所以直线OB的斜率为.

因为k·≠-1,所以AC与OB不垂直。

所以四边形OABC不是菱形,与假设矛盾。

所以当点B不是W的顶点时,四边形OABC不可能是菱形。

知识点

两点间的距离公式椭圆的几何性质直线与圆锥曲线的综合问题
1
题型: 单选题
|
单选题 · 5 分

设椭圆C:(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为(  )。

A

B

C

D

正确答案

D

解析

如图所示,在Rt△PF1F2中,|F1F2|=2c,

设|PF2|=x,则|PF1|=2x,

由tan 30°=,得.

而由椭圆定义得,|PF1|+|PF2|=2a=3x,

,∴.

知识点

椭圆的几何性质
1
题型:简答题
|
简答题 · 13 分

在直角坐标系xOy中,已知中心在原点,离心率为的椭圆E的一个焦点为圆C:x2+y2-4x+2=0的圆心.

(1)求椭圆E的方程;

(2)设P是椭圆E上一点,过P作两条斜率之积为的直线l1,l2.当直线l1,l2都与圆C相切时,求P的坐标.

正确答案

(1); (2),或,或,或

解析

(1)由,得.故圆C的圆心为点

从而可设椭圆E的方程为其焦距为,由题设知

故椭圆E的方程为:

(2)设点的坐标为的斜分率分别为的方程分别为与圆相切,得

即     

同理可得  .

从而是方程的两个实根,于是

解得

它们满足①式,故点P的坐标为

,或,或,或.

知识点

椭圆的几何性质
1
题型: 单选题
|
单选题 · 5 分

如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点,若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是(  )

A3

B2

C

D

正确答案

B

解析

由题意可知椭圆的长轴长2a1是双曲线实轴长2a2的2倍,即a1=2a2,而椭圆与双曲线有相同的焦点。

故离心率之比为

知识点

椭圆的几何性质
1
题型:简答题
|
简答题 · 13 分

已知分别是椭圆的左、右焦点关于直线的对称点是圆的一条直径的两个端点。

(1)求圆的方程;

(2)设过点的直线被椭圆和圆所截得的弦长分别为。当最大时,求直线的方程。

正确答案

(1)      

(2)

解析

(1)先求圆C关于直线x + y – 2 = 0对称的圆D,由题知圆D的直径为直线对称.

(2)由(Ⅰ)知(2,0), ,据题可设直线方程为: x = my +2,m∈R. 这时直线可被圆和椭圆截得2条弦,符合题意.

圆C:到直线的距离

.

由椭圆的焦半径公式得:

.

所以当

知识点

圆的标准方程椭圆的几何性质直线与圆锥曲线的综合问题
1
题型:简答题
|
简答题 · 15 分

已知a,b是实数,函数 的导函数,若在区间上恒成立,则称在区间上单调性一致

(1)设,若在区间上单调性一致,求b的取值范围;

(2)设,若在以a,b为端点的开区间上单调性一致,求|a-b|的最大值

正确答案

(1) [(2)

解析

(1)由题意知上恒成立,因为a>0,故

进而上恒成立,所以

因此的取值范围是[

(2)令

又因为

所以函数上不是单调性一致的,因此

现设

时,

因此,当时,

故由题设得

从而

因此时等号成立,

又当,从而当

故当函数上单调性一致,因此的最大值为

知识点

椭圆的几何性质
1
题型:简答题
|
简答题 · 12 分

如图,动圆C1:x2+y2=t2,1<t<3,与椭圆C2+y2=1相交于A,B,C,D四点,点A1,A2分别为C2的左,右顶点。

(1)当t为何值时,矩形ABCD的面积取得最大值?并求出其最大面积;

(2)求直线AA1与直线A2B交点M的轨迹方程。

正确答案

(1) 时,矩形ABCD的面积最大,最大面积为6; (2) -y2=1(x<-3,y<0)

解析

(1)设A(x0,y0),则矩形ABCD的面积S=4|x0||y0|。

+y02=1得y02=1-,从而

x02y02=x02(1-)=

时,Smax=6,从而时,矩形ABCD的面积最大,最大面积为6。

(2)由A(x0,y0),B(x0,-y0),A1(-3,0),A2(3,0)知

直线AA1的方程为

y=(x+3),①

直线A2B的方程为

y=(x-3),②

由①②得

y2(x2-9)。③

又点A(x0,y0)在椭圆C上,故

y02=1-。④

将④代入③得-y2=1(x<-3,y<0)。

因此点M的轨迹方程为-y2=1(x<-3,y<0)

知识点

椭圆的几何性质直线与圆锥曲线的综合问题直线、圆及圆锥曲线的交汇问题
1
题型: 单选题
|
单选题 · 5 分

如图,F1,F2是椭圆C1+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是(  )。

A

B

C

D

正确答案

D

解析

椭圆C1中,|AF1|+|AF2|=2a=4,|F1F2|=2c=.又四边形AF1BF2为矩形,∴∠F1AF2=90°,∴|AF1|2+|AF2|2=|F1F2|2,∴|AF1|=,|AF2|=,∴双曲线C2中,2c=,2a=|AF2|-|AF1|=,故,故选D

知识点

椭圆的几何性质双曲线的几何性质
1
题型:填空题
|
填空题 · 5       分

椭圆的左、右焦点分别为,焦距为,若直线与椭圆的一个交点满足,则该椭圆的离心率等于()

正确答案

解析

本题考查的是圆锥曲线的离心率,由题意可知,中,,所以有,整理得,故答案为

知识点

椭圆的几何性质直线与圆锥曲线的综合问题
1
题型:填空题
|
填空题 · 4 分

已知点为椭圆的左焦点,点为椭圆上任意一点,点的坐标为,则取最大值时,点的坐标为                       。

正确答案

解析

知识点

椭圆的几何性质
下一知识点 : 椭圆的相关应用
百度题库 > 高考 > 文科数学 > 椭圆的几何性质

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题