- 平面与圆柱面的截线
- 共757题
选修4-1:几何证明选讲
如图所示,圆的直径
,
为圆周上一点,
,过
作圆的切线
,过
作
的垂线
,垂足为
,求∠DAC
正确答案
600
略
已知和
相交于A、B两点,过A点作
切线交
于点E,连接EB并延长交
于点C,直线CA交
于点D,
(1)当点D与点A不重合时(如图1),证明:ED2=EB·EC;
(2)当点D与点A重合时(如图2),若BC=2,BE=6,求的直径长.
正确答案
(1)证明详见解析;(2)
试题分析:(1)连接AB,在EA的延长线上取点F,由弦切角定理可得∠FAC=∠ABC,而∠FAC=∠DAE,(对顶角)证得∠ABC=∠DAE,然后内接四边形的性质证得∠ABC=∠ADE,即得∠DAE=∠ADE.所以EA=ED,由切割线定理可得,即
.
(2)直线CA与⊙O2只有一个公共点,所以直线CA与⊙O2相切,由弦切角定理知:然后证明
,即AC与AE分别为⊙O1和⊙O2的直径.最后根据切割线定理证得AE的长.
试题解析:(1)连接AB,在EA的延长线上取点F,如图①所示.
∵AE是⊙O1的切线,切点为A,
∴∠FAC=∠ABC,.∵∠FAC=∠DAE,
∴∠ABC=∠DAE,∵∠ABC是⊙O2内接四边形ABED的外角,
∴∠ABC=∠ADE,∴∠DAE=∠ADE.∴EA=ED,∵,∴
(2)当点D与点A重合时,直线CA与⊙O2只有一个公共点,
所以直线CA与⊙O2相切.如图②所示,由弦切角定理知:
∴AC与AE分别为⊙O1和⊙O2的直径. 8分
∴由切割线定理知:EA2=BE·CE,而CB=2,BE=6,CE=8
∴EA2=6×8=48,AE=.故⊙O2的直径为
. 10分
如图,圆O的半径OC垂直于直径AB,弦CD交半径 OA于E,过D的切线与BA的延长线交于M.
(1)求证:MD=ME;
(2)设圆O的半径为1,MD=,求MA及CE的长.
正确答案
(1)见解析(2)
(1)证明:连接OD,∵∠CEO+∠ECO=90°,∠MDE+∠EDO=90°,又∠EDO=∠ECO,
∴∠CEO=∠MDE=∠MED,∴MD=ME.
(2)∵MD2=MA·MB,∴3=MA·(MA+2),
∴MA=1.
∵在Rt△MDO中,MO=2,MD=,
∴∠MOD=60°,∴∠COD=150°,∴∠ECO=15°,CE=.
如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:
(1)CD=BC;
(2)△BCD∽△GBD.
正确答案
(1)见解析(2)见解析
(1)因为D,E分别为AB,AC的中点,所以DE∥BC.
又已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD=AD.
而CF∥AD,连结AF,
所以四边形ADCF是平行四边形,
故CD=AF.
因为CF∥AB,所以BC=AF,故CD=BC.
(2)因为FG∥BC,故GB=CF.
由(1)可知BD=CF,所以GB=BD.
所以∠BGD=∠BDG.
而∠DGB=∠EFC=∠DBC,由(1)知CD=BC,
故△BCD∽△GBD.
已知:如图,在等腰梯形中,
,过点
作
的平行线
,交
的延长线于点
.求证:⑴
⑵
正确答案
略
略
扫码查看完整答案与解析